สรุปใจความสำคัญ part 1 – รู้จัก เข้าใจ และใช้งานเพื่อเปลี่ยนจากความสนใจเป็นการยกระดับธุรกิจ
Turn AI hype into business results: Top takeaways from UiPath AI Summit 2024
ในทุกๆ ปีทาง UiPath RPA platform อันดับต้นๆในตลาดจะมีการจัดงาน ai summit โดยปีนี้มีการแบ่งเนื้อหาน่าสนใจออกเป็นทั้งหมด 4 ส่วนด้วยกันคือ
1.เนื้อหาในส่วนของการกล่าวเปิด การแชร์ความเห็นจากผู้เชี่ยวชาญจาก Forrester และการเล่า overview การเปิดตัวสิ่งใหม่ๆจาก UiPath
2.การประยุกต์ใช้จริง และประสบการณ์จริง อุปสรรคและการต่อยอดในอนาคต แยกตาม automation & ai ตามประเภทอุตสาหกรรม ธนาคาร ประกันภัย การผลิต สุขภาพ เป็นต้น
3.รายละเอียด แยกตาม module ใหม่ๆของ UiPath ในยุคต่อไป ที่เป็นการดึงเอาศักยภาพของ ปัญญาประดิษฐ์เข้ามามีส่วนและแบ่งแยก AI ออกเป็นสองส่วนคือ Specialized AI และ GenAI
4.แผนการออกบริการและผลิตภัณฑ์ใหม่ๆ การสนับสนุน (Platform Road Map) และการมองอนาคตของการเอา automation & ai มาใช้อย่างเห็นผล
ในเนื้อหาตอนแรกนี้ แอดมินของเล่าจากการฟังอย่างรวดเร็ว (เขียน blog นี้โดยฟังและจับเอาจากการนั่งฟัง live และจดสรุปใจความสำคัญออกมาได้ดังนี้ (key note session)
- ในช่วงแรก ผบห UiPath คุยสัมภาษณ์ mr.Curran (Senior Analyst at Forrester) ถึงการนำเอา GenAI ต้องคำนึงถึงสามเรื่องคือ การเตรียมบริบท การเปิดและการให้เข้าถึงโมเดล และการนำไปใช้ ถ้าทำสามอย่างได้อย่างง่ายๆ จะทำให้การใช้งานจริงในธุรกิจ ประสบผลดี
- ทั้งนี้ platform การใช้งานต้องอยู่ภายใต้ความมั่นคง ปลอดภัย และน่าเชื่อถือ
- การทำให้บริบท พร้อมถึงขีดสูงสุดเพื่อให้ GenAI มี prompt ที่สมบูรณ์จริงๆ ก่อนนำไปสร้างผลลัพธ์ที่ถูกต้อง ไม่มีการตามมาหลอกหลอนของ AI ด้วยการทำการต่อสายดิน (อันนี้แปลตรงตัว แต่ก็ทำให้เข้าใจดี) ว่ามีการประยุกต์
- ประสานแนวคิด RAG (Retrieval Augmented Generation) หรือที่เราเรียกย่อๆ ว่า RAG คือเทคนิคในการสร้างระบบการสนทนาปัญญาประดิษฐ์ (Conversational AI) ที่ใช้การผสมผสานระหว่างการถอดความ (Retrieval) จากฐานความรู้ขนาดใหญ่ และการสร้างข้อความ (Generation) โดยใช้โมเดลการสร้างภาษา (Language Model)โดยจะมีกระบวนการทำงานของ RAG มีดังนี้:
- ระบบจะวิเคราะห์คำถามหรือข้อความของผู้ใช้
- ระบบจะค้นหาข้อมูลที่เกี่ยวข้องจากฐานความรู้ขนาดใหญ่ โดยอาจเอามาจาก Enterprise Data warehouse หรือ Data mart ในเรื่องต่างๆ ที่องค์กรทำขึ้น
- โมเดลการสร้างภาษาจะนำข้อมูลที่ค้นพบมาสังเคราะห์และสร้างคำตอบด้วย GenAI
- จุดเด่นของ RAG คือช่วยให้ระบบ AI มีความรู้ที่ครอบคลุมและทันสมัยมากขึ้น เนื่องจากดึงข้อมูลจากแหล่งความรู้ภายนอก และประสานกันกับภายใน แต่คำตอบก็ยังคงความเป็นธรรมชาติจากการสร้างข้อความของโมเดลภาษา ทำให้การสนทนามีประสิทธิภาพมากขึ้นถูกต้องและหลอนน้อยลงไปมาก
- เปิดตัว UiPath LLM อย่าง DocPath และ ComPath โดยตัว UiPath DocPath จะช่วยให้องค์กรประมวลผลเอกสารใด ๆ ทางธุรกิจที่ซับซ้อน และไม่มีโครงสร้างได้ดี ส่วนตัว UiPath CommPath มีความสามารถประมวลผลการสื่อสารที่หลากหลาย ตั้งแต่ข้อความ อีเมล chat ด้านธุรกรรมไปจนถึงคําขอที่ซับซ้อนซึ่ งมีคําขอหลายรายการและภาษาเฉพาะบริบทในแต่ละธุรกิจ แต่ละองค์กร ทั้งนี้จุดขายคือความแม่นยำ การเทรนโมเดลที่เร็ว และน่าเชื่อถือ
- เปิดตัว UiPath AutoPilot ที่มีความเก่งในแต่ละด้านอาทิ สร้าง process flow program ได้ด้วย prompt หรือแม้กระทั่งสร้าง UiPath App (low-code) ด้วยการส่ง PDF ภาพตัวอย่างที่เราออกแบบมาคร่าวๆได้เลย ยังมีรายละเอียดที่จะเขียนต่อไปในบทความตอน div deep ต่อไปครับ
Course outline ที่ทีมกำลัง explore คือ concept ของ RAG และ Vector database ที่ใช้ในการ implement Gen AI รวมทั้งเรื่อง autopilot ที่เป็น new feature built in AI
หลายๆเรื่องยังอยู่ใน private preview ครับ … และหากเมื่อ GA เมื่อไหร่ผมจะนำเอามารวมใน course outline แน่นอนครับผม