Blog

ลักษณะพิเศษ

การนำ Specialized LLMs มาใช้เพื่อลดเวลาการ train โมเดลของ UiPath Document Understanding

UiPath LLM with Document Intelligence Platform

งาน AI-Powered Automation Summit in Bangkok ประจำปี 2024 ที่ได้จัดโดย UiPath เมื่อวันที่ 23 เมษายน ณ โรงแรม Siam Kempinski Hotel Bangkok ได้มีการแนะนำเทคโนโลยีใหม่ๆ ของสาย automation ที่น่าสนใจหลายอย่าง ซึ่งหนึ่งในนั้นคือการพัฒนา large language model ของ UiPath เอง (Specialized LLMs) ขึ้นมาเพื่อนำมาใช้งานกับเครื่องมือ UiPath Document Understanding (DU) ทำให้ประสิทธิ์ภาพการทำงานของ DU เพิ่มขึ้นไปอีกมาก

แต่ก่อนที่จะลงลึกไปที่ Specialized LLMs ที่ว่านี้ ทางออโต้แมทขอเล่าถึงโซลูชั่นการจัดการกับข้อมูลที่ไม่ได้เป็น digital (หมายถึงพวกรูปภาพหรือเอกสารที่ถูกสแกน เป็นต้น) ก่อนว่าเราสามารถนำข้อมูลเกลุ่มนี้เข้ามาใช้งานใน automation process อย่างไร

ในการทำงานกับลูกค้าของเรา เมื่อข้อมูลตั้งต้นที่ต้องนำไปใช้ในขั้นตอนการทำงานต่างๆอยู่ในรูปของเอกสารหรือไฟล์ที่ถูกสแกนมา เช่นการดึงข้อมูล part number จากเอกสาร design specification เพื่อไปจัดทำ BOM ในระบบ ERP หรือการนำรายการยาและอุปกรณ์ทางการแพทย์จากเอกสาร invoice ไปใช้กับกระบวนการเคลมของบริษัทประกัน เป็นต้น ซึ่งเอกสารเหล่านี้ก็มักจะมีลักษณะที่ไม่ตายตัว มีรูปลักษณะที่แตกต่างกันไปแม้เป็นเอกสารชนิดเดียวกัน เราจะนำ UiPath Document Understanding (DU) เข้ามาทำการคัดแยกชนิดเอกสารและดึงข้อมูลที่ต้องใช้ออกจากเอกสารเหล่านี้ ซึ่งผลลัพท์จากการดึงหรืออ่านข้อมูลนี้ก็จะถูกโรบอทในกระบวนการ RPA นำไปทำงานในระบบเคลมหรือระบบ MRP ต่อไป

อย่างไรก็ตาม ถึงแม้ UiPath Document Understanding จะช่วยทำงานดังกล่าวได้เป็นอย่างดีและสามารถก้าวข้ามความท้าทายของการจัดการข้อมูลเอกสารต่างๆเช่น การอ่านภาษาไทย, การอ่าน field พิเศษอย่าง checkbox, การสแกนเอกสารเอียง เป็นต้นได้ก็ตาม เราสังเกตได้ว่าในกรณีที่เอกสารมีความซับซ้อนสูงและมีเอกสารใหม่เข้ามาอยู่เรื่อยๆ การ train AI model ของ UiPath Document Understanding จำเป็นต้องอาศัยข้อมูลเป็นจำนวนมากและใช้เวลาค่อนข้างมากด้วยในการ train ให้ model ดังกล่าวให้เข้าใจเอกสารในระดับที่เกิดความผิดพลาดต่ำ

UiPath เองก็ได้มีการพัฒนาเทคโนโลยีใหม่ๆขึ้นมาเพื่อเพิ่มประสิทธิภาพการทำงานของผลิตภัณฑ์ต่างๆของตนเองรวมทั้ง Document Understanding เพื่อให้ model มีความแม่นยำยิ่งขึ้น โดยเมื่อไม่นานมานี้ UiPath ได้เริ่มรวมเอาความสามารถของ Generative AI หลายอย่างเข้ามาใน Document Understanding เช่นการออก Generative Extractor model เพื่อเพิ่มขีดความสามารถให้ผู้ใช้งานระบุข้อมูลหรือข้อความที่ต้องการดึงจากเอกสารผ่านการทำงานร่วมกับ prompt เช่นการดึงข้อมูล job candidate จากอีเมล เอกสาร resume หรือเอกสารการสมัครงานอื่นๆตามตัวอย่างที่แสดงด้านล่าง

ข้อมูล prompt ดังกล่าวจะถูกส่งไปที่ LLM พร้อมกับข้อมูลของเอกสาร ทำโรบอทสามารถเข้าใจเอกสารได้รวดเร็วกว่าการที่ต้องนำตัวอย่างเอกสารการสมัครงานจำนวนมากเข้ามา train ด้วยตัวผู้ใช้งานเองอย่างเดียว

ทีนี้เรากลับมาที่หัวข้อ Specialized LLMs ที่ได้เกริ่นไว้แล้วข้างบน

การนำความสามารถในการทำงานร่วมกับ GenAI ของ Document Understanding อย่างในกรณีของ Generative Extractor นั้นถือเป็นการทำงานกับ LLM ที่ train เอาไว้แล้วกับชุดข้อมูลที่หลากหลาย (diverse datasets) เพื่อให้สามารถหาคำตอบให้กับผู้ใช้งานที่เป็น generic ซึ่งหมายความว่าพวกเขาอาจถามในเรื่องอะไรก็ได้

กลุ่มของ LLMs ที่เป็น generic หรืออาจเรียกอีกอย่างว่า foundational LLMs เหล่านี้ (GPT-4 คือตัวอย่างหนึ่ง) มีความรอบรู้ในด้านกว้างแต่ก็อาจขาดความรู้ในเชิงลึก เช่นการทำความเข้าใจและดึงข้อมูลที่ถูกต้องออกจากเอกสารที่เราต้องการ พูดอีกอย่างนึงก็คือ ถ้าเราตัดความจำเป็นที่ large language model ต้องเข้าใจในแทบทุกเรื่อง (อย่าง foundational LLMs) เพื่อคลอบคลุมความรู้ที่หลากหลาย และเลือกพัฒนา LLMs ขึ้นมาเพื่อโฟกัสการ train เฉพาะ domain หรือ subject ที่เราสนใจจะใช้งาน เราก็จะได้ model ที่แม่นยำและไม่ต้องใช้เวลา train มากอย่างที่ผ่านมา

ที่คือ Specialized LLMs ที่ UiPath ทำและได้แถลงเปิดตัวเมื่อช่วงปลายไตรมาสที่ 1 ของปีนี้รวมทั้งในงาน AI-Powered Automation Summit ที่กรุงเทพฯ โดย UiPath ได้พัฒนาขึ้นมา 2 model คือ DocPath ซึ่งเป็น LLM ที่พัฒนาขึ้นมาใช้กับ UiPath Document Understanding และ CommPath ซึ่งเป็น LLM ที่พัฒนาขึ้นมาใช้กับ UiPath Communication Mining ซึ่งทั้ง 2 model นี้ถูกสร้างโดยมี core ของฟังชั่นการทำงานเป็น GenAI แต่มีการ train กับเอกสารและ communication messages ที่มีความซับซ้อนเพื่อตอบโจทย์การทำงานที่ต้องอาศัยความรู้ความเข้าใจในเชิงลึก

ฉะนั้น ด้วยการโฟกัสเฉพาะเรื่องที่สนใจแต่สร้าง model ด้วย GenAI ที่มีความสามารถอันมากมาย ผลลัพธ์ซึ่งวัดด้วยความแม่นยำของการทำงานไม่ว่าจะเป็นการคัดแยกชนิดเอกสารหรือการอ่านข้อมูลที่ต้องการจากเอกสารจะสูงกว่า LLMs แบบ generic อื่นๆรวมทั้งตัวของ UiPath Document Understanding เองก่อนหน้าที่จะมี Specialized LLMs อย่างแน่นอน ซึ่ง UiPath ก็ได้เปิดเผยผลการทดสอบภายในที่แสดงให้เห็นว่า UiPath DocPath มีความผิดพลาดโดยเฉลี่ยต่ำกว่า GenAI Model ชั้นนำอยู่ระหว่าง 45% – 76% ด้วยกันเมื่อพิจารณากันเฉพาะความสามารถในการอ่านเอกสารได้อย่างถูกต้อง

ผลการทดสอบด้านบนแสดงเปอร์เซ็นต์ความผิดพลาดจากการอ่านเอกสาร (Extraction Errors) ของเทคโนโลยีด้านการจัดการเอกสารต่างๆที่นำ AI เข้ามาใช้เพิ่มขีดความสามารถ ซึ่ง UiPath DocPath มีเปอร์เซ็นต์ความผิดพลาดต่ำที่สุดเมื่อเทียบกับกลุ่มเทคโนโลยีที่ยังใช้ Generic LLMs 

ฉะนั้นจากความสามารถของเทคโนโลยีการจัดการเอกสารล่าสุด (Intelligent Document Processing) ที่มีการนำ Specialized LLMs เข้ามาร่วมทำงานด้วย ดูเหมือนว่าเราจะก้าวข้ามคำถามที่ว่าจะแยกเอกสารที่ต้องการออกจากเอกสารที่เข้ามาทั้งหมดได้อย่างไรหรือจะอ่านเอกสารที่เป็นแบบ unstructured ได้อย่างไรไปแล้ว แต่เป็นคำถามที่ว่าจะทำอย่างไรให้มี process การทำงานที่ถูกต้องแม่นยำโดยใช้เวลาไม่นานในการ train หรือ retrain AI model ให้สามารถทำงานได้จริง

Credit:

  1. UiPath Blog
  2. Internal R&D Lab
ลักษณะพิเศษ

UiPath AI Summit 2024 

Turn AI hype into business results: Top takeaways from UiPath AI Summit 2024 – automat notes

สรุปใจความสำคัญ part 1รู้จัก เข้าใจ และใช้งานเพื่อเปลี่ยนจากความสนใจเป็นการยกระดับธุรกิจ

Turn AI hype into business results: Top takeaways from UiPath AI Summit 2024

ในทุกๆ ปีทาง UiPath RPA platform อันดับต้นๆในตลาดจะมีการจัดงาน ai summit โดยปีนี้มีการแบ่งเนื้อหาน่าสนใจออกเป็นทั้งหมด 4 ส่วนด้วยกันคือ

1.เนื้อหาในส่วนของการกล่าวเปิด การแชร์ความเห็นจากผู้เชี่ยวชาญจาก Forrester และการเล่า overview การเปิดตัวสิ่งใหม่ๆจาก UiPath

2.การประยุกต์ใช้จริง และประสบการณ์จริง อุปสรรคและการต่อยอดในอนาคต แยกตาม automation & ai ตามประเภทอุตสาหกรรม ธนาคาร ประกันภัย การผลิต สุขภาพ เป็นต้น

3.รายละเอียด แยกตาม module ใหม่ๆของ UiPath ในยุคต่อไป ที่เป็นการดึงเอาศักยภาพของ ปัญญาประดิษฐ์เข้ามามีส่วนและแบ่งแยก AI ออกเป็นสองส่วนคือ Specialized AI และ GenAI

4.แผนการออกบริการและผลิตภัณฑ์ใหม่ๆ การสนับสนุน (Platform Road Map) และการมองอนาคตของการเอา automation & ai มาใช้อย่างเห็นผล

ในเนื้อหาตอนแรกนี้ แอดมินของเล่าจากการฟังอย่างรวดเร็ว (เขียน blog นี้โดยฟังและจับเอาจากการนั่งฟัง live และจดสรุปใจความสำคัญออกมาได้ดังนี้ (key note session)

all session
  • ในช่วงแรก ผบห UiPath คุยสัมภาษณ์ mr.Curran (Senior Analyst at Forrester) ถึงการนำเอา GenAI ต้องคำนึงถึงสามเรื่องคือ การเตรียมบริบท การเปิดและการให้เข้าถึงโมเดล และการนำไปใช้ ถ้าทำสามอย่างได้อย่างง่ายๆ จะทำให้การใช้งานจริงในธุรกิจ ประสบผลดี
  • ทั้งนี้ platform การใช้งานต้องอยู่ภายใต้ความมั่นคง ปลอดภัย และน่าเชื่อถือ
  • การทำให้บริบท พร้อมถึงขีดสูงสุดเพื่อให้ GenAI มี prompt ที่สมบูรณ์จริงๆ ก่อนนำไปสร้างผลลัพธ์ที่ถูกต้อง ไม่มีการตามมาหลอกหลอนของ AI ด้วยการทำการต่อสายดิน (อันนี้แปลตรงตัว แต่ก็ทำให้เข้าใจดี) ว่ามีการประยุกต์
  • ประสานแนวคิด RAG (Retrieval Augmented Generation) หรือที่เราเรียกย่อๆ ว่า RAG คือเทคนิคในการสร้างระบบการสนทนาปัญญาประดิษฐ์ (Conversational AI) ที่ใช้การผสมผสานระหว่างการถอดความ (Retrieval) จากฐานความรู้ขนาดใหญ่ และการสร้างข้อความ (Generation) โดยใช้โมเดลการสร้างภาษา (Language Model)โดยจะมีกระบวนการทำงานของ RAG มีดังนี้:
    • ระบบจะวิเคราะห์คำถามหรือข้อความของผู้ใช้
    • ระบบจะค้นหาข้อมูลที่เกี่ยวข้องจากฐานความรู้ขนาดใหญ่ โดยอาจเอามาจาก Enterprise Data warehouse หรือ Data mart ในเรื่องต่างๆ ที่องค์กรทำขึ้น
    • โมเดลการสร้างภาษาจะนำข้อมูลที่ค้นพบมาสังเคราะห์และสร้างคำตอบด้วย GenAI
    • จุดเด่นของ RAG คือช่วยให้ระบบ AI มีความรู้ที่ครอบคลุมและทันสมัยมากขึ้น เนื่องจากดึงข้อมูลจากแหล่งความรู้ภายนอก และประสานกันกับภายใน แต่คำตอบก็ยังคงความเป็นธรรมชาติจากการสร้างข้อความของโมเดลภาษา ทำให้การสนทนามีประสิทธิภาพมากขึ้นถูกต้องและหลอนน้อยลงไปมาก
  • เปิดตัว UiPath LLM อย่าง DocPath และ ComPath โดยตัว UiPath DocPath จะช่วยให้องค์กรประมวลผลเอกสารใด ๆ ทางธุรกิจที่ซับซ้อน และไม่มีโครงสร้างได้ดี ส่วนตัว UiPath CommPath มีความสามารถประมวลผลการสื่อสารที่หลากหลาย ตั้งแต่ข้อความ อีเมล chat ด้านธุรกรรมไปจนถึงคําขอที่ซับซ้อนซึ่ งมีคําขอหลายรายการและภาษาเฉพาะบริบทในแต่ละธุรกิจ แต่ละองค์กร ทั้งนี้จุดขายคือความแม่นยำ การเทรนโมเดลที่เร็ว และน่าเชื่อถือ
  • เปิดตัว UiPath AutoPilot ที่มีความเก่งในแต่ละด้านอาทิ สร้าง process flow program ได้ด้วย prompt หรือแม้กระทั่งสร้าง UiPath App (low-code) ด้วยการส่ง PDF ภาพตัวอย่างที่เราออกแบบมาคร่าวๆได้เลย ยังมีรายละเอียดที่จะเขียนต่อไปในบทความตอน div deep ต่อไปครับ
ลักษณะพิเศษ

แนวโน้มของ AI & Automation ในปี 2024

เป็นเรื่องปกติไปในแล้วในทุกๆปี ใกล้วาระเปลี่ยนปี จะมี blog หรือเอกสารงานวิจัยมาแชร์เรื่องราวน่ารู้อย่าง แนวโน้มสำคัญที่คนไอทีในวงการต้องรู้ วันนี้มาฟังเรื่อง Trend ของ business automation กันครับ

เป็นเอกสารแชร์จากทาง UiPath Global ที่อ้างอิงถึงสำนักวิจัยดังๆหลายๆที่เช่น Gartner (Magic Quadrant 2023-RPA), Forrester Wave – RPA Q12023 หรือ Mckinsey&Company ในบทความต่างๆ มากมายที่แอดมินตามศึกษา จะบอกออกมานัยยะแนวเดียวกันหมดเลยถึงเรื่องผลกระทบการมาของ “GenAI” ชื่อเต็มๆคือ Generative AI พวก Open.AI (ChatGPT), Google (Bard) และอื่นๆที่จะตามมาในอนาคตอย่างมากมาย

เอกสารช่วยสรุปความออกมาเป็น 7 แนวโน้ม ซึ่งแน่นอนเข้าทาง UiPath ที่เป็นผู้นำในตลาด RPA อยู่แล้ว เหมือนอ่านจบเราแค่ได้รับการยืนยันเพิ่มจากสำนักวิจัยอื่นๆ ว่า “ใช่แล้ว” ถูกทางแน่ๆ ประมาณนี้ มาลองดูที่แอดมินสรุปกันครับ

  1. การรับรู้และซึมซับถึงประโยชน์ของ automation & ai สู่ผู้บริหารระดับสูง อย่างไม่เคยเป็นกันมาก่อน เทรนนี้จะส่งผลถึงการให้ความสำคัญกับทรัพยากร การวางแผนเอา GenAI มาใช้พัฒนากระบวนการทำงาน งบประมาณที่ลงไปกับเรื่องราวเหล่านี้จะถูกตอบแทนด้วยผลลัพธ์ที่หวังเอาไว้เช่นเพิ่มประสิทธิภาพงาน (85%) เพิ่มช่องทางการทำรายได้ใหม่ (52%) ยกระดับงานเดิม (58%) เป็นต้น
  2. แนวโน้มนี้พูดถึง การเลือก use case ที่ดี จะทำให้ “มีชัย” ไปกว่าครึ่ง … ในกรณีนี้คือเหล่า CIO, CEO คงต้องประเมินว่าเมื่อเราให้ความสำคัญและอยากเริ่มต้น และสำเร็จได้อย่างรวดเร็ว ควรเลือก automation + GenAI ที่มีแนวโน้มทำได้เลย และมี ROI สูงๆ โดยในที่นี้มีตัวอย่างที่ #automat เราทำสำเร็จมาแล้วอย่าง IDP (Intelligent Document Processing) โครงการนี้มีส่วนประกอบหลักสามเรื่องคือ RPA + OCR และ AI โดยเราช่วยลูกค้าประหยัดเวลาในการทำงานกับเอกสารด้านการประกันภัยที่มีหลากหลายรูปแบบ ทำให้ลดเวลาและเพิ่มความแม่นยำ นอกจากนี้ยังมี use case อย่างการประยุกต์ใช้ Communication Mining กับกระบวนการอ่านเอกสาร email, text และสัญญาต่างๆ (ใช้ GenAI มาช่วยแยกเยอะ ตีความ และตอบกลับ) เป็นต้น
  3. แนวโน้มที่มาแรงมากๆ อีกและถูกผู้บริหาร ผู้นำในองค์กรโหวตถึง 86% คือการใช้ ai มาช่วยยกระดับการสแกนกระบวนการปัจจุบัน และหา “ช่องโหว่” เพื่อปรับปรุงกระบวนการ ซึ่งในทุกวันนี้มีการใช้งาน process mining tools และ communication mining มาเพื่อจับสัญญาณต่างๆ เปรียบเหมือนเราไปสแกน MRI เพื่อให้ได้ผลวิเคราะห์ที่ถูกต้องแม่นยำมากขึ้น มาใช้ในการพัฒนา ปรับกระบวนการ
  4. จากผลลัพธ์จากแบบสอบถาม 65% มองเรื่องการความจำเป็นในการที่องค์กรจะเริ่มมองหา และใช้งานเทคโนโลยีปัญญาประดิษฐ์อย่าง LLM (Large Language Model) และ Generative AI เสียที หลายๆ องค์กรจะริเริ่ม pilot ในปีนี้เสียด้วยซ้ำ แนวโน้มการใช้ “Co-Pilot” หรือผู้ช่วยการทำงานของพนักงานในทุกระดับ ไม่ว่า business user ที่ไม่มีทักษะไอทีใด ๆ หรือ นักพัฒนาโปรแกรม นักวิเคราห์ปรับปรุงกระบวนการ ซึ่งจากนี้ไปจะมีเครื่องมือจาก UiPath Autopilot มาเป็นเพื่อน ไมว่าคุณอยากจะเทรนโมเดล สอนการ copy-paste ข้อมูลข้ามจากเอกสาร (กระดาษ) ไปลงปลายทางที่หน้าจอระบบ ERP (GUI) ก็ทำได้อย่างง่ายๆ และทำด้วยด้วยภาษามนุษย์เราสื่อสารกับ GenAI เป็นต้น ไว้อันนี้แอดมินจะมาเล่าละเอียดอีกครั้ง
  5. ความสามารถของปัญญาประดิษฐ์ทำให้เกิดแนวโน้มอันนี้ที่ว่าในตัวกระบวนการสร้าง robot เองก็จะ “เก่ง” ขึ้นเรื่อยๆ ตั้งแต่การสร้างโปรแกรมด้วยการสั่งงาน (ไม่ต้องเริ่มด้วยการโค้ด) การรู้ตนด้วยการรู้สถานะตนเองของโรบอทว่าทำงานได้ปกติดี หรือต้องการปรับปรุงส่วนใด ๆ ระบบจะนำแนะออกมาให้นักพัฒนา และสุดท้ายคือการเทรนโมเดลที่ทำได้ด้วยความรวดเร็วกว่ายุคก่อนด้วยเทคนิคใหม่ๆอย่าง GenAI เป็นต้น ซึ่งอันนี้จะเป็นแค่การเริ่มต้นในปีหน้า แต่จะต่อยอดอย่างเข้มแข็งเป็นเทรนหลักในปีต่อๆไป
  6. จริยธรรม ธรรมมาภิบาล รวมไปถึงกฎเกณฑ์การใช้เอไอได้ หรือไม่ได้จะถูกกำหนดขึ้นมาจากองค์กร แรงกระเพื้อมอันนี้จำเป็นอย่างยิ่งในยุคเอไอถูกใช้จากคนในทุกระดับ เพราะเราต้องมี platform ที่แข็งแรง มีการเก็บข้อมูลการใช้งาน เอามาวิเคราะห์และตั้งกฎตั้งค่าการใช้ให้ปลอดภัย และไม่ไปละเมิดกฎเกณฑ์ใดๆ ที่มนุษย์เราตั้งขึ้นมาด้วย การทำงานร่วมระหว่างมนษย์และหุ่นยนต์ในลักษณะ “ผู้ตรวจงานโรบอท” จะเป็นแนวโน้มหลักจากนี้ไป ทำให้เทรนอันนี้จำเป็นต้องมีผู้รู้ที่เคยทำมาก่อน มี best practice ที่ดีมาช่วยแนะนำด้วย
  7. แนวโน้มการต้องยอมรับการเปลี่ยนแปลงด้วยการ force จากปัญญาประดิษฐ์ ความสามารถของมันในการทำงานแทนมนุษย์เรา ด้วยทักษะของ LLM ที่ปัจจุบันก็แทบจะทำได้ 70-80%ในงานนั้นๆอยู่ จะเกิดอะไรในปี 2030 เมื่อ กระบวนการทั้งหมดจะถูกปรับเป็นระบบอัตโนมัติด้วยโรบอต เกิดการทำงานร่วมกันของมนุษย์และหุ่นยนต์  แนวคิดของการ “นิยาม” การทำงานใหม่ๆ จึงเกิดขึ้นเช่น การเรียนรู้จากผู้เชี่ยวชาญในรูปแบบใหม่ๆ การนำเข้าประสบการณ์ใหม่ใหม่ควบรวมกับประสิทธิภาพของปัญญาประดิษฐ์ การออกกฎเกณฑ์มาควบคุมและดูแลในระดับสังคมโดยรวม และสุดท้ายคือการพัฒนาทักษะใหม่ใหม่อาทิเช่น prompt engineers ที่อาจจะมาแทนที่ทักษะการเขียน code เป็นต้น ในปีหน้าน่าจะมีอะไรใหมๆ มาเพิ่มเข้าไปอีก หวังว่าทุกคนจะเรียนรู้ และสนุกไปกับมันกันครับ

ในปีหน้าน่าจะมีอะไรใหมๆ มาเพิ่มเข้าไปอีก หวังว่าทุกคนจะเรียนรู้ และสนุกไปกับมันกันครับ

Source:

https://www.uipath.com/resources/automation-whitepapers/automation-trends-report
ลักษณะพิเศษ

สู่ Cognitive Automation กับการใช้งานในอุตสาหกรรมการผลิต

ก้าวล้ำไปกับยุค ai สู่ Cognitive Automation ผสานพลัง ai ไปใน RPA

ในช่วงไม่กี่ปีที่ผ่านมาการใช้เทคโนโลยีรวมถึง Robotic Process Automation (RPA) และ Artificial Intelligence (AI) ในการผลิตได้กลายเป็นที่เป็นที่นิยมมากขึ้น การผสานระหว่าง RPA และ AI ในการผลิตได้มีบทบาทสำคัญในการปรับปรุงกระบวนการผลิต เพิ่มประสิทธิภาพ และลดค่าใช้จ่าย และคาดว่าจะมีผลกระทบอย่างมากต่ออุตสาหกรรมในอนาคตต่อจากนี้ไป

RPA เป็นเทคโนโลยีที่ช่วยให้ธุรกิจสามารถอัตโนมัติงานที่ซ้ำซากและใช้เวลานาน มันเกี่ยวข้องกับการใช้หุ่นยนต์ซอฟต์แวร์เพื่อทำงานเช่นกรอกข้อมูล การประมวลผลใบแจ้งหนี้ และการประมวลผลการสั่งซื้อ RPA สามารถใช้ได้ในกระบวนการผลิตต่างๆ เช่นการจัดการสินค้าคงคลัง การควบคุมคุณภาพ การออกใบเสนอราคา การบริการลูกค้าผ่านช่องทางต่างๆ  และการจัดการโซ่อุปทาน การผสมผสาน RPA ในกระบวนการผลิตทำให้เกิดความแม่นยำ ความเร็ว และประหยัดค่าใช้จ่าย

AI เป็นเทคโนโลยีที่ช่วยให้เครื่องจักรเรียนรู้จากข้อมูล ตรวจสอบรูปแบบ และตัดสินใจโดยใช้ข้อมูลนั้น สามารถนำไปใช้ในการผลิต เช่นการตรวจจับข้อบกพร่อง “ทำนาย” การเสื่อมสภาพของเครื่องจักร และการปรับปรุงกระบวนการผลิตโดยการปรับการผลิตให้มีประสิทธิภาพมากขึ้นผ่านการทำ process mining และการใช้ AI ในการประมวลผลข้อมูลที่เกี่ยวข้องกับกระบวนการผลิต คิดและแนะนำผ่าน data analytic ที่สร้างอย่างรวดเร็วได้จาก Generative AI ช่วยให้กิจกรรมที่เกี่ยวข้องกับการควบคุมคุณภาพ การจัดการสินค้าคงคลัง และการวางแผนการผลิตเป็นไปอย่างมีประสิทธิภาพมากขึ้น เร็วและผิดพลาดน้อยได้อีกด้วย

ProcessTaskAutomation
Production trackingMeasure, analyze and improve visibility throughout the manufacturing processUse intelligent automation to develop a near real-time overview of progress on orders and the ongoing need for components or raw materials2
Invoice processingExtract data from invoices, compare with purchase orders, check for duplicates, update records in ERP systemUse RPA bots with OCR to automate the entire invoice processing cycle
Supply chain optimizationPrepare purchasing proposals, collect auction bids, create contracts, track shipments, manage ordersUse RPA bots to enable real-time data gathering, reporting, and communication across the supply chain
ตัวอย่างการประยุกต์ใช้

การผสมผสาน RPA และ AI ต้องคำนึงถึงการใช้เทคโนโลยีอย่างเหมาะสม การที่ผู้ประกอบการจะสองเทคโนโลยีนี้ให้เกิดประโยชน์สูงสุดต้องมีการวางแผนการใช้งานให้ถูกต้อง นอกจากนี้ยังมีความจำเป็นที่จะต้องมีการฝึกอบรมและพัฒนาทักษะของพนักงานเพื่อให้เข้าใจการใช้งาน RPA และ AI ในการผลิต อาจพิจารณาเรื่องการสร้างทีมงาน COE (Community of Excellence) ให้เกิดในองค์กร สร้าง Citizen Developer ให้ช่วยกันออกแบบ ดูแล ใช้งานอย่างถูกต้อง ให้ทีม COE ติดตามและประเมินผลการใช้งานเพื่อปรับปรุงและปรับเปลี่ยนการใช้งานอย่างต่อเนื่อง

ทั้งนี้เราอาจมองพัฒนาการของการควบรวมสองเทคนี้ออกเป็นสี่ขั้นตอน แบ่งเป็นความสามารถในการรองราบกระบวนการที่ซับซ้อนจากมองไปน้อย และการใช้ความสามารถของทั้ง rpa, ai อย่างเต็มที่ (ถ้าเราดึงความสามารถของทั้งสองเทคนี้มา ก็ย่อมรองรับกระบวนการที่ซับซ้อนสูงได้) จึงอาจเริ่มจาก

1.Robotic Process Automation ใช้งานทั่วไป มีมนุษย์สั่งงานเป็นขั้นตอนแล้วโปรแกรมมาทำแทนมนุษย์ (ได้ในบางส่วน) และยังคงต้องตรวจสอบผลงานก่อนนำไปใช้

2.Cognitive Automation รองรับงานได้มากขึ้น รับงานที่ไม่เป็นโครงสร้างจากการใช้ Machine Learning มาช่วย

3.Digital Assistants ระหว่างมนุษย์ และโปรแกรมโรบอท คุยกันผ่านภาษาที่ใช้ง่ายๆ และโปรแกรมนำงานไปปฎิบัติ

4.Automonous Agents ยังคงพัฒนาต่อเนื่องเพื่อให้ระบบทำงานทดแทนได้อย่างสมบูรณ์ ซึ่งขั้นนี้มองไปถึงการใช้โปรแกรมตัดสินใจทดมนุษย์เลย (กำลังพัฒนา และแนวโน้มเป็นไปในทิศทางนี้แต่ต้องใช้เวลาอีกพอสมควร)

สรุปว่า การผสมผสาน RPA และ AI ในการผลิตเป็นเทคโนโลยีที่สามารถช่วยเพิ่มประสิทธิภาพและความแม่นยำในการผลิต ช่วยลดค่าใช้จ่ายและเพิ่มกำไรให้กับธุรกิจให้แข่งขันได้ในยุคข้าวยากหมากแพง อย่างไรก็ตามการเลือกใช้งาน และผสานเทคโนโลยีนี้ ยังต้องมีการวางแผนและการฝึกอบรมพนักงานอย่างถูกต้อง และการติดตามผลการใช้งานเพื่อปรับปรุงและปรับเปลี่ยนเทคโนโลยีให้เหมาะสมกับธุรกิจ

ทาง automat consulting และสถาบัน IMC ได้ร่วมกันจัดงาน meet up สำหรับ นักวิเคราะห์ทางธุรกิจ นักพัฒนากระบวนการ นักพัฒนาระบบ มาร่วมรับฟัง แลกเปลี่ยนการใช้งาน RPA และ AI ในอุตสาหกรรมการผลิต โรงงาน การขนส่ง รวมไปถึงระบบ back office ต่างๆ ในวันที่ 26 พค. นี้ รายละเอียดดังนี้ 

ลงทะเบียนที่นี่ครับ https://docs.google.com/forms/d/e/1FAIpQLSdC1uf5l1wtxoQKNJThESYd1m2T1Rt2F69hMe2OrqXvy0_dSg/viewform

Source:

Learn more:

  1. planettogether.com2. blueprism.com3. research.aimultiple.com4. uipath.com5. nanonets.com6. contus.com7. techtarget.com
  2. UiPath AI Summit 2023, 2023

Process Discovery คืออะไร, สำคัญอย่างไรสำหรับโครงการ RPA

สำหรับผู้ที่มีหน้าที่ขับเคลื่อนโครงการ RPA หรือมีบทบาทในโครงการ RPA นั้น ขั้นตอนของ Process Discovery จัดว่าเป็นขั้นตอนหนึ่งที่สำคัญมากของโครงการ เนื่องจากเรื่องนี้เกี่ยวข้องโดยตรงกับความสำเร็จในการนำเทคโนโลยี RPA ไปใช้กับงานในองค์กรของเรา

เราลองนึกภาพดูถ้าองค์กรของเราเลือก process การทำงานที่ (ไม่ทราบมาก่อนว่า) ซับซ้อน เกิดปัญหามากมายในขั้นตอนการพัฒนาอันทำให้โครงการล่าช้ากว่ากำหนดมากและได้ผลลัพท์ที่สุดท้ายแล้ว ไม่ได้ช่วยให้ผู้ใช้งานมีชีวิตการทำงานที่ง่ายขึ้น โครงการนี้ก็จะหมดความน่าสนใจจากทุกๆฝ่ายไปในที่สุด

Process Discovery เป็นขั้นตอนที่สมาชิกโครงการ RPA (ผู้ที่มีบทบาทหลักคือ หัวหน้าโครงการ ผู้ใช้งาน นักวิเคระห์และออกแบบระบบ เป็นต้น) คัดเลือกและวิเคราะห์กระบวนการทำงานที่มีอยู่ภายในองค์กรเพื่อพิจารณาว่ากระบวนการใดเหล่านี้เหมาะสำหรับพัฒนา เป็นระบบทำงานอัตโนมัติด้วย RPA โดยเป็นการค้นหากระบวนการที่มีลักษณะต่อไปนี้ เช่น เป็นการทำงานซ้ำในรูปแบบเดิม ใช้เวลามากจนกระทบงานอื่น มีเงื่อนไขการทำงานที่แน่นอน เกี่ยวข้องกับงานที่ต้องอาศัยข้อมูลจากระบบต่าง ๆ ในองค์กรมาประกอบการใช้งานเป็นจำนวนมาก

เป็นต้นโดยเรียกคุณลักษณะเหล่านี้ว่าเกณฑ์การพิจารณา ส่วนผลลัพธ์ของการทำงานส่วนนี้จะเป็น Process List ที่ผู้ใช้งานหรือสมาชิกโครงการระดมความคิดออกมาว่า กระบวนการทำงานไหนบ้างที่สมควรถูกเลือกขึ้นมาศึกษาในเชิงลึกว่ามีความเหมาะสม คุ้มค่ากับการพัฒนาให้เป็นระบบทำงานอัตโนมัติบ้าง

ในการทำ workshop ของขั้นตอน Process Discovery เราอาจใช้วิธีแบ่งกลุ่มผู้ใช้งานออกเป็นกลุ่มต่างๆ ที่ค่อนข้างมีความเข้าใจการทำงานในปัจจุบันของแต่ละคน และเลือก process ที่เห็นร่วมกันออกมาชุดหนึ่งเพื่อหารือกันในที่ประชุมรวม

ผู้ใช้งานจะต้องพยายามคิดว่างานของตนยังมีสิ่งใดที่เป็นปัญหาหรือสามารถทำให้ได้ดีกว่าที่เป็นอยู่ หากไม่แน่ใจก็สามารถซักถามเพื่อนร่วมกลุ่มหรือวิทยากรที่มีหน้าที่ให้คำปรึกษา เพื่อที่ว่าสุดท้ายกลุ่มของตนจะสามารถได้ Process List ที่มั่นใจได้ว่าสามารถช่วยปรับปรุงการทำงานของเราให้ดีขึ้นได้

การทำ workshop นี้ ยังเป็นโอกาสอันดีที่

  1. พนักงานบุคคลากรในกลุ่มสามารถแลกเปลี่ยนข้อมูลและความเข้าใจในการทำงานของแต่ละคนซึ่งอาจอยู่คนละแผนก ซึ่งการเข้าร่วม workshop ลักษณะนี้ไม่ใช่เป็นแค่การประชุมเฉพาะกิจเวลาที่เกิดปัญหาและต้องการการแก้ไขเฉพาะหน้า แต่เป็นเรื่องของการมองภาพใหญ่ของโอกาสในการปรับปรุงกระบวนการทำงานให้มีประสิทธิภาพมากขึ้น
  2. ได้รับฟังความคิดเห็นและมุมมองในการทำงานที่กว้างขึ้นจากพนักงานที่ปกติอาจจะไม่ได้มีโอกาสแสดงความคิดเห็นออกมา เนื่องจากในแต่ละวันเราก็จะให้ความสนใจเฉพาะกับงานที่เราต้องรับผิดชอบ ทำให้ขาดโอกาสในการเห็นภาพรวม
  3. ได้รับความรู้และข้อมูลจากฝั่งของเทคโนโลยีจากผู้เชี่ยวชาญที่นำมาถ่ายทอดแลกเปลี่ยนระหว่างการทำworkshop ซึ่งทำให้องค์กรสามารถรับทราบความเป็นไปของเทคโนโลยีที่ตนเองสามารถนำมาใช้ประโยชน์ แม้บางแนวคิดที่ได้จาก workshop อาจยังไม่เหมาะสมที่จะหยิบมาพัฒนาได้เลยทันที แต่ก็ยังสามารถุศึกษาเพิ่มเติมหากเป็นประโยชน์ในอนาคตได้  

ทั้งนี้ Process List ที่สมาชิกโครงการได้รวบรวมออกมาจะถูกนำมาจัดกลุ่มเป็น 4 กลุ่มหรือ 4 Quadrants ตามการประเมินจากมุมมองแรกคือ มองประโยชน์ที่ผู้ใช้งานหรือองค์กรคาดหมายจะได้รับ และอีกมุมคือมุมมองของต้นทุนและความซับซ้อนของการพัฒนางานเหล่านี้ให้เป็นระบบ RPA

โดยที่กลุ่มของกระบวนการทำงานใน Process List ทั้ง 4 กลุ่มสามารถอธิบายได้ดังนี้

  1. Quick-Win: กลุ่มกระบวนการทำงานที่จะก่อให้เกิดประโยชน์แก่องค์กรได้มาก ในขณะที่ต้นทุนหรือความซับซ้อนในการพัฒนากระบวนการทำงานให้เป็น RPA มีไม่มากนัก เหมาะสมกับการเลือกมาทำเป็นระบบ RPA เป็นกลุ่มแรก ซึ่งเราต้องการได้ผลลัพท์ที่รวดเร็วเพื่อรักษาโมเมนตัมของโครงการ
  2. Low-Hanging Fruits: กลุ่มกระบวนการทำงานที่จะก่อให้เกิดประโยชน์แก่องค์กรได้พอประมาณ แม้ไม่มากเท่ากับกลุ่ม Quick-Win ในขณะที่ต้นทุนการทำงานก็ไม่ได้สูงมากหรือทำได้ไม่ยากเท่าไหร่ หากพิจารณาว่าสามารถได้รับประโยชน์ที่เพียงพอ ก็สามารถเลือกทำเป็นกลุ่มถัดไป
  3. Must-Do Improvements: กลุ่มกระบวนการทำงานที่คาดหวังให้เกิดประโยชน์แก่องค์กรได้มาก แม้มีต้นทุนค่าใช้จ่ายที่สูงหรือมีความซับซ้อนในประเด็นต่างๆของการพัฒนาระบบอยู่พอสมควร ก็ยังคุ้มที่จะลงทุนทำ
  4. Long-Term Improvements: กลุ่มกระบวนการทำงานที่มีประโยชน์หรือคุณค่าต่อองค์กรไม่มาก โดยเฉพาะเมื่อเทียบกับต้นทุนความซับซ้อนที่ต้องใช้พัฒนาโครงการ อาจมองกลุ่มงานนี้เป็นกลุ่มสุดท้าย อาจพิจารณายังไม่ต้องทำในตอนนี้ หรือรอพิจารณาเชิงคุณประโยชน์ที่มีโอกาสเพิ่มขึ้นได้ในอนาคต 

เราสามารถใช้เกณฑ์การให้คะแนน (Automation Score) ที่คำนึงจากปัจจัยทั้งด้านประโยชน์ที่คาดว่าจะได้รับและด้านต้นทุนการพัฒนา มาช่วยเราในการจัดกลุ่มได้ 

อย่างไรก็ตามแม้การทำ workshop ในขั้นตอน Process Discovery นี้จะดูมีขั้นมีตอน มีเกณฑ์การคัดเลือก Process List ที่ค่อนข้างชัดเจนและสามารถคำนวนเป็นตัววัดเชิงปริมาณอย่างคะแนนที่จะช่วยให้เราจัดกลุ่ม process เหล่านี้ได้ เรายังมีข้อสังเกตบางประการจากการสังเกตกิจกรรมที่เกิดขึ้นใน workshop ซึ่งอาจทำให้เราไม่ได้ Process List ที่ดีที่สุดสำหรับการวางแผนโครงการ RPA ในระยะถัดไป คือ

  1. การขาดบุคคลากรที่มีความเข้าใจจริงในกระบวนการทำงานที่กำลังประเมินอยู่ ในกรณีที่ผู้ใช้งานที่ลงมือทำเองหรือมีความเข้าใจในขั้นตอนและปัญหาการทำงานจริงๆไม่ได้อยู่ร่วมใน workshop ซึ่งทำให้ Process List ที่ทำออกมาไม่ได้แสดงถึงกลุ่มงานที่เหมาะสมที่สุดที่จะพัฒนาให้เป็นระบบ RPA
  2. การขาดข้อมูลที่จำเป็นสำหรับการตัดสินกระบวนการทำงานที่กำลังประเมินอยู่ เวลาเราพูดถึงประโยชน์ที่คาดหวังจากการเพิ่มประสิทธิภาพการทำงานหรือความซับซ้อนของการทำงานที่เรากำลังเผชิญอยู่ เราควรมีวิธีที่จะเก็บค่าสถิติของการทำงานนี้ให้ได้อย่างครบถ้วนและใกล้เคียงความจริงให้ได้มากที่สุด เช่น ขั้นตอนและเงื่อนไขการทำงานที่เราทำอยู่ เวลาที่ใช้อยู่ เวลาที่คาดการณ์ว่าจะลดลงเมื่อมีระบบ RPA มาใช้เป็นต้น ถ้าสมมุติฐานหรือค่าสถิติเหล่านี้คลาดเคลื่อนจากความจริงไปมาก เราจะได้ Process List ที่ไม่เหมาะสมและจะส่งผลต่อความสำเร็จและการยอมรับของโครงการ RPA
  3. การที่ผู้ใช้งานหรือบุคคลากรที่มีหน้าที่ประเมินความเหมาะสมของโครงการ ยังไม่ได้รับทราบข้อมูลด้านเทคโนโลยีที่จะนำมาใช้ออกแบบและทำงานจริงอย่างเพียงพอ ทำให้เป็นอุปสรรคต่อการประเมินความซับซ้อนของการพัฒนาและการเลือกรูปแบบการทำงานใหม่ที่เหมาะสม

การได้ Process List จากการทำ workshop เป็นเพียงผลลัพท์แรกเท่านั้น process ต่างๆที่คิดได้ยังต้องผ่านการพิจารณาในรายละเอียดและจัดทำเป็น business case ที่มีข้อมูลสนับสนุนในเชิง costs & benefits ที่เพียงพออีก เพื่อให้ผู้มีอำนาจตัดสินใจอนุมัติและรวบรวมเข้าไปในแผนการพัฒนาโครงการต่อไป

ปัญหาที่พบจากข้อสังเกตที่กล่าวถึงในบทความสามารถแก้ไขได้โดยการจัดการเวลาที่เหมาะสมเพียงพอ เช่นการให้ความรู้เชิงเทคโนโลยีกับผู้ใช้งานที่เพียงพอก่อนที่จะประเมินความเป็นไปได้ของการพัฒนากระบวนการทำงานต่างๆ และการใช้เครื่องมือหรือเทคนิคในการเก็บค่าสถิติของการทำงาน เช่น เวลาและขั้นตอนการทำงานที่แท้จริงไม่ใช่มาจากการคาดเดา จุด bottleneck ต่างๆของแต่ละกระบวนการทำงาน เป็นต้น เพื่อให้การทำ Process Discovery ได้ผลลัพท์ที่เกิดประโยชน์ที่แท้จริงแก่องค์กร

หุ่นยนต์นักบัญชีปี 2023 (Robotic Process Automation with Accounting use case)

ในช่วงต้นเดือน ต.ค. ที่ผ่านมานับเป็นเกียรติอย่างยิ่งของแอดมิน และทีมงาน automat consulting ได้รับความไว้วางใจให้เข้าไปมีส่วนในการแบ่งปันประสบการณ์ถ่ายทอดการใช้งานระบบ RPA ให้กับน้องน้องนิสิตปริญญาตรี และปริญญาโทคณะบัญชี จุฬาลงกรณ์มหาวิทยาลัย ซึ่งก่อให้เกิดการประชุมร่วมมือกันทำ MOU สามฝ่ายตั้งแต่คณะบัญชีจุฬา(CBS) รวมไปถึง UiPath Global และบริษัท Automat Consulting พวกเราหารือกันว่าจะร่วมกันแบ่งปัน แชร์เครื่องมือ และสอนการพัฒนา เพิ่มทักษะดิจิตตอลด้วยการใช้ RPA จาก UiPath ให้กับน้อง ๆ นิสิต บุคลากรในมหาวิทยาลัย และยังเล็งเห็นความสำคัญไปถึงภาคของสังคมอีกด้วย น่าจะได้เห็นกิจกรรมดีๆ จากความร่วมมือครั้งนี้กันต่อไปครับ

จากนั้นทาง อจ จากคณะได้ขอให้ช่วยไปทำ online session เพื่อแชร์เรื่อง “ความสำเร็จของหุ่นยนต์นักบัญชี” ในช่องบัญชีออนไลน์ที่จัดกันทุกๆเดือน แอดมินก็เตรียมข้อมูล เคส และ live demo หลายๆชิ้นไป ปรากฏว่าคุยไปมาเวลาหมดกันไปเสียก่อน ยังมีเรื่องที่เตรียมไว้แต่ไม่ได้เล่าจึงถือโอกาสมาเขียนแชร์ไว้ในบล็อกวันนี้เลย และหวังว่าโอกาสหน้าจะได้ไปเล่าใน Banshi Online ให้กับท่านนักบัญชีอีกครั้งครับ แต่สามารถตามไปดู-ฟัง ย้อนหลังกันได้ที่นี่ครับ (หนึ่งชั่วโมง)

บล็อกวันนี้เลยนำ use case ทางบัญชีที่เห็นกันประจำ และ automat ได้เข้าไปช่วยทำออกมาคร่าวดังนี้ครับ

  1. การประมวลผลใบสั่งซื้อ (Purchase Order Processing) ใช้ในการอัตโนมัติกระบวนการสแกนใบสั่งซื้อเพื่อดึงข้อมูลสำคัญ, นำข้อมูลเหล่านี้เข้าสู่ระบบที่เหมาะสม และสร้างคำขออนุมัติ
  2. การจับข้อมูลของใบกำกับสินค้า ใบส่งของ (Invoice, DO Data Capture) เราเอา RPA+AIไปใช้ในการสแกน แปลงรูปแบบ และอัปโหลดข้อมูลจากใบกำกับสินค้าที่เป็นกระดาษและเอกสารกระดาษที่เหมือนกันโดยอัตโนมัติเข้าสู่ระบบ ERP เช่น SAP, JDE, Oracle หรืออื่นๆ
  3. การสร้างใบกำกับสินค้าอัตโนมัติ (Invoice Creation) เราใช้ RPA ไปอ่านข้อมูลอัตโนมัติคำขอใบกำกับสินค้าทางอีเมลและไฟล์แนบ บันทึกไฟล์ที่ได้รับโดยอัตโนมัติ และบันทึกข้อมูลในระบบบัญชี RPA สามารถใช้ในการอ่านไฟล์ Excel ในโฟลเดอร์ที่แชร์เพื่อดึงรายละเอียดและเก็บไว้ในฐานข้อมูล จากนั้นเข้าสู่ระบบบัญชีเช่น SAP, Oracle เพื่ออัพเดตข้อมูลกลับ คนก็ไม่ต้องพิมพ์อีก ลดเวลาไปเยอะ
  4. การอัตโนมัติกระบวนการใบกำกับสินค้า (Invoice Process Automation) ประมวลผลใบกำกับสินค้าตั้งแต่เริ่มจนจบ สามารถดึงข้อมูล จัดประเภท และตรวจสอบข้อมูลจากใบกำกับสินค้าหรือบิลสาธารณ utilitiesได้โดยอัตโนมัติ
  5. การตรวจสอบการปรับปรุงบัญชีระหว่างบริษัท Intercompany Reconciliations (ICR) ใช้ RPA ช่วยในการปรับสมดุลบัญชี และสร้างงบการเงิน (Excel with formula) โดยไม่มีข้อผิดพลาดใด ๆ

ตอนจบรายการ แอดมินยังได้มีการ live demo สั้นๆ ไปกับตัว UiPath Clipboard AI ซึ่งเป็นอีกเครื่องมือหนึ่งที่น่าจะมีประโยชน์กับนักบัญชี และไว้จะนำมาเล่าในโอกาสต่อไป

Youtube = https://youtu.be/HTyR_2jOKFM

Source: 

  1. https://www.facebook.com/BanshiOnline/videos/1084329746064231/?mibextid=zDhOQc
  2. https://youtu.be/HTyR_2jOKFM

ตัวอย่างความสำเร็จการใช้งาน RPA ด้วยอเวนเจอร์ทีม (COE– Community of Excellence)

ประสบความสำเร็จ ด้วยการจัดทีมที่ถูกต้องกับ COE

“UiPath Automation CoE Q1 FY24” นำเสนอสรุปความสำคัญของความสำเร็จและการอัปเดตในศูนย์กลางการอัตโนมัติของ UiPath (Automation Center of Excellence, CoE) ในไตรมาสแรกของปีงบประมาณ 2024 ซึ่ง CoE เป็นทีมที่ได้รับมอบหมายจาก UiPath ให้เน้นการขับเคลื่อนโครงการอัตโนมัติและให้การดำเนินโครงการอัตโนมัติอย่างเป็นทางการสำเร็จลงตัว

บทความบล็อก blog.uipath.com เน้นไปที่หลายส่วนที่สำคัญภายใน UiPath Automation CoE ซึ่งรวมถึง:

  1. การขยายขอบเขตของ CoE: CoE (แก็งค์อเวนเจอร์ ผู้เชี่ยวชาญเรื่อง automation ในบทบาทต่างๆ) ได้เพิ่มขนาดทีมและการเผยแพร่ทางภูมิภาคอย่างมีนัยสำคัญ มีการรับสมาชิกใหม่เข้าทีมเพื่อสนับสนุนความต้องการในการบริการอัตโนมัติที่เพิ่มมากขึ้นในภูมิภาคต่างๆ
  2. ความสำเร็จของลูกค้า: บทความบล็อกนำเสนอบางเรื่องราวเกี่ยวกับความสำเร็จของลูกค้าของ UiPath ที่ได้ใช้ความเชี่ยวชาญของ CoE เพื่อบรรลุผลลัพธ์ทางธุรกิจที่แท้จริงผ่านการใช้งานโซลูชันอัตโนมัติ ตัวอย่างเหล่านี้สะท้อนค่าออกมาเป็นรูปธรรม วัดผลได้ และผลกระทบของการนำเสนอโซลูชันอัตโนมัติ
  3. ความร่วมมือและการแบ่งปันความรู้: CoE เน้นการร่วมมือและการแบ่งปันความรู้ภายในชุมชนของ UiPath ทีมมุ่งหวังในการแลกเปลี่ยนแนวทางที่ดีที่สุด การเรียนรู้ไปด้วยกัน และแชร์ความรู้ภายในระบบอัตโนมัติทั่วไปเพื่อเป็นประโยชน์ต่อกันผ่านระบบการสื่อสารต่างๆ เช่น Automation Hub
  4. การปรับปรุงอย่างต่อเนื่อง: CoE มุ่งมั่นที่จะพัฒนาความสามารถ ส่งต่อระบบอัตโนมัติ ลงทุนในงานวิจัยและพัฒนาเพื่อทำให้เป็นที่น่าสนใจสำหรับเทคโนโลยีอัตโนมัติและการส่งมอบโซลูชันนวัตกรรม
  5. แบ่งปัน และแชร์คิดเห็น และการรับรองจากตัวจริงในแต่ละอุตสาหกรรม: บทความบล็อกเน้นผลงานที่ได้รับการยอมรับในอุตสาหกรรมอัตโนมัติผ่านการบรรยายความคิดเห็น ทีมงานได้รับการยอมรับเป็นอย่างดีและมีส่วนร่วมในงานประชุมและการสัมมนาอุตสาหกรรม
  6. การสนับสนุนและการช่วยเหลือลูกค้าตลอด: CoE ให้การสนับสนุนอย่างครบวงจรให้กับลูกค้าตลอดการเดินทางทางอัตโนมัติของพวกเขา ซึ่งรวมถึงการฝึกอบรมโปรแกรมเสริมการทำงาน การเครื่องมือฝึกอบรม และการประชุมในการสนับสนุนลูกค้าในการสร้างและขยายมูลค่าของโครงการอัตโนมัติของพวกเขาได้อย่างมีประสิทธิภาพ

มองเค้า แล้วเราเอามาเป็นตัวอย่าง เรียนรู้จากคนเก่ง ๆ จะบอกว่าโดยรวมแล้ว การให้ความสำคัญกับการทำให้ Automation CoE เป็นตัวเลือกที่ดี ในการขับเคลื่อนความเป็นเลิศของอัตโนมัติและสร้างค่าให้กับลูกค้า องค์กรเอง… มันเน้นการเติบโตของทีม แชร์ตัวอย่างความสำเร็จของลูกค้าหรือกรณีศึกษาพวก Use case ต่าง (จับต้องได้) ความร่วมมือ การปรับปรุงอย่างต่อเนื่อง เน้นแชร์ความคิดเห็น และการสนับสนุนและช่วยเหลือลูกค้า องค์กรในไทยที่ประสบความสำเร็จที่แอดมินพบเห็นต่างมีทีม COE ที่เข้มแข็งทั้งนั้นเลย โดยบทความต่อๆไปเราจะเน้นไปถึงวิธีการรวบรวมตัว (ก่อตั้ง) – สื่อสารปฎิบัติการ (จัดการ) และบทบาทสำคัญเพื่อให้ทีมอเวนเจอร์นี้เก่งกันไปคนละทางแต่มารวมแล้วได้ประโยชน์ (บทบาท) กันครับ ตามอ่านต่อนะครับ 🙂

Source: UiPath AI Summit 2023, 2023

Digital Assistant กับประโยชน์ของการเชื่อมต่อ ChatGPT + RPA

ปฐมบทของ Digital Assistant เครื่องมือที่จะมาเป็นผู้ช่วยในการทำงานของมนุษย์เราในยุค 2023

กับข่าวคราวการเปิดตัว GPT-4 ไปนับว่ายิ่งเพิ่มพูนกับการถูกพูดถึงของ ai Generative AI มากยิ่งขึ้นไปอีก ความสามารถ ความรวดเร็วถูกต้องยิ่งเพิ่มขึ้นไปอีก คงไม่ได้เป็นเพียงกระแสที่มาแล้วผ่านไปอีกแล้ว บทความวันนี้จึงขอมาแบ่งปันถึง “การควบรวม” ของสองเทค (ai+RPA) ที่อีกไม่นานจะรวมร่างและกลายเป็น Digital Assistant ประโยชน์ของมันที่จะมาช่วยแบ่งเบาภาระงานของworker อย่างพวกเรา มาอ่านกันครับ

ในช่วงปลายเดือนพฤศจิกายน 2565 บริษัทวิจัย OpenAI ได้เปิดตัว AI Chatbot ที่ชื่อ ChatGPT ต่อสาธารณะเป็นครั้งแรกและก็สร้างปรากฎการณ์เกิดเป็นกระแสขึ้นมาทันทีให้คนพูดถึงกันอย่างกว้างขวาง

ถามว่าทำไมถึงเป็นอย่างนี้ทั้งๆที่เทคโนโลยี AI หรือ Artificial Intelligence อยู่ในการรับรู้ของสังคมมาแล้วเป็นเวลานับสิบๆปี ซึ่งคำตอบน่าจะเป็นว่านี่เป็นครั้งแรกที่เทคโนโลยี AI ได้เข้าสู่การใช้งานในชีวิตประจำวันของคนทั่วไปอย่างกว้างขวาง (mass adoption) มีการใช้งานที่ง่าย เกิดประโยชน์ต่อคนทั่วไปทั้งเรื่องงานและเรื่องส่วนตัว จึงไม่แปลกที่เราจะเห็นยอดคนลงทะเบียนเข้าใช้งานพุ่งถึง 100 ล้านคนภายในแค่ 2-3 เดือนหลังจากการเปิดตัว

ในขณะที่ส่วนของซอฟต์แวร์ RPA เองก็มีการใช้เพิ่มขึ้นอย่างต่อเนื่องทั้งขององค์กรที่เพิ่งเริ่มใช้และองค์กรที่ใช้มานานแล้ว จนเรียกได้ว่าสำหรับหลายองคกรนั้น มีการใช้งาน RPA robot ในลักษณะ digital assistant คือเป็นพนักงานดิจิตัลที่ทำงานกลมกลืนกับพนักงานทั่วไปในแต่ละแผนก

ดังนั้นความสนใจของเราในบทความนี้ จึงอยู่ที่ว่าเทคโนโลยีที่ช่วยเหลือการทำงานขององค์กรทั้งสองตัวนี้ ถ้ามาเชื่อมต่อทำงานร่วมกัน จะเกิดเป็นภาพอย่างไร และจะเกิดประโยชน์ในด้านใดได้บ้าง

ทีม Automat เราจึงรวบรวม Use Cases ของการทำงานร่วมกันของ ChatGPT กับ RPA มาเล่าให้ท่านผู้อ่านฟัง รวมทั้งการที่เราได้ทดลองสร้างกระบวนการที่เชื่อมต่อสองเทคโนโลยีนี้ ซึ่งจะไปกล่าวถึงในช่วงท้ายของบทความ

ทั้งนี้ส่วนหนึ่งของ Use Cases ที่สามารถเกิดประโยชน์ต่อการทำงานของเราในแต่ละฟังชั่นงานมีดังต่อไปนี้

  1. การนำ ChatGPT เข้ามาช่วยนักพัฒนาในโครงการพัฒนาโปรแกรม

นักพัฒนาสามารถใช้ประโยชน์จาก ChatGPT ได้โดยตรงเช่น การใส่ code ที่เขียนโดยนักพัฒนาคนอื่นแล้วให้ ChatGPT อธิบายการทำงานของ code นั้นๆซึ่งอาจเขียนขึ้นเพื่อสร้างฟังชั่นการทำงานต่างๆของ RPA ทำให้ประหยัดเวลาของนักพัฒนาลงได้มากหากต้องไปแกะเอาเอง หรือนักพัฒนาอาจสามารถใช้ ChatGPT ในการจัดทำ เอกสารโครงการ เช่น process design document, technical design document, operation guide เป็นต้น โดยการใส่ข้อมูลของระบบที่พัฒนาเข้าไปแล้วให้ ChatGPT เขียนข้อความและแนะนำประเด็นที่ผู้ใช้งานควรรับทราบ ถึงแม้นักพัฒนายังต้องเข้าไปตรวจทานงานของ ChatGPT ก่อนการใช้งานจริงอยู่ดีเนื่องจาก ChatGPT เองยังต้องการเวลาที่จะเรียนรู้พัฒนาตัวเองอีกมาก แต่ก็ปฎิเสธไม่ได้ว่าการนำเทคโนโลยีนี้เข้ามาใช้ น่าจะช่วยลดเวลาลงได้พอสมควร

  • การวิเคราะห์ความคิดเห็นหรือข้อติชมของลูกค้าด้วย ChatGPT

ความสามารถด้านการวิเคราะห์ภาษาหรือรูปประโยคที่เป็นการสื่อสารแบบธรรมชาติถือเป็นจุดเด่นของ ChatGPT เราสามารถใช้ความสามารถนี้กับการวิเคราะห์ความรู้สึกของลูกค้าที่มีต่อผลิตภัณฑ์หรือบริการของเราได้ เราสามารถวิเคราะห์ความคิดเห็นที่เป็น comment หรือ review ของลูกค้าโดยส่งผ่านข้อความเหล่านั้นให้ ChatGPT ก่อนจากนั้นเราก็ป้อนคำสั่งให้ระบบทำการคัดแยกจัดกลุ่มความคิดเห็นในเชิง sentiment ว่าความเห็นไหนเป็น positive หรือเป็นความเห็นที่ลูกค้ามีความชอบหรือความรู้สึกที่ดีกับผลิตภัณฑ์บริการของเรา ความเห็นไหนเป็น negative หรือความเห็นไหนไม่สามารถระบุความชอบได้

เราสามารถนำ RPA เข้ามาสร้างเป็นกระบวนการที่ทำงานต่อเนื่องจากผลลัพท์ของ ChatGPT ได้ เช่นความเห็นไหนที่เป็นระบบวิเคราะห์ว่าเป็น negative จะถูกส่งให้ทีมดูแลลูกค้าเพื่อแก้ปัญหาหรือส่งเป็นข้อมูลให้ทีมผลิตภัณฑ์ใช้เป็นแนวทางในการพัฒนาปรับปรุงต่อไป

  • การใช้ ChatGPT and RPA สำหรับงานบริหารทรัพยากรบุคคล

ฝ่ายบริหารทรัพยากรบุคคลสามารถใช้ประโยชน์จากการทำงานร่วมระหว่าง ChatGPT และ RPA ได้เหมือนกัน ซึ่งหนึ่งในนั้นคือการให้ ChatGPT เขียนประโยคหรือข้อความในเอกสารองค์กรเพื่อสื่อสารกับพนักงาน ผู้บริหาร หรือผู้มาสมัครงานที่กำลังสนใจร่วมงานกับเรา โดยเจ้าหน้าที่ HR จะเป็นผู้กำหนดข้อมูลที่จะใช้เป็น input ของ ChatGPT สำหรับการสร้างเนื้อหาที่ใช้สื่อสารกับแต่ละกลุ่มบุคคล 

อีกตัวอย่างหนึ่งคือ การทำ pre-screening ข้อมูลของผู้สมัครงาน เช่น resume, job description, etc. แล้วให้ ChatGPT สร้าง matching score เพื่อดูความเหมาะสมของตำแหน่งงานกับคุณสมบัติและประสบการณ์ของผู้สมัครแต่ละราย เป็นต้น

  • การใช้ ChatGPT สร้างเนื้อหาของฝ่ายการตลาด

องค์กรหรือหน่วยงานด้านการตลาดสามารถให้ ChatGPT ช่วยเขียน content ต่างๆด้านการตลาดได้ ทั้งนี้โดยทั่วไปแล้ว งานผลิต content มักเป็นงานที่ใช้เวลาและความคิดสร้างสรรค์มากเพื่อที่จะให้ได้ content ที่มีคุณภาพดีและสามารถสื่อสารได้ตามวัตถุประสงค์ นักการตลาดสามารถให้ ChatGPT สร้าง content บางส่วนหรือทั้งหมดของการทำ brochure การเขียนข้อความโฆษณา การจัดทำ VDO script รวมทั้งงานที่ต้องทำผ่านโซเชียลมีเดียอย่าง blog, online article เป็นต้นซึ่งถ้ามีปริมาณมากหรือมีเวลาจำกัดในการผลิต ก็สามารถนำ RPA เข้ามาช่วยได้เช่นกัน 

  • ChatGPT กับงานด้านการขาย

งานขายเป็นงานที่มีการปฎิสัมพันธ์กับลูกค้าซึ่งเราสามารถนำจุดเด่นด้านภาษาของ ChatGPT เข้ามาช่วยงานเราได้ เช่น เมื่อได้ข้อมูล input ที่เป็นข้อมูลของลูกค้า เช่นข้อมูล demographic ข้อมูลความสนใจ ประวัติการซื้อหรือประวัติการใช้งาน เป็นต้นแล้ว เราสามารถให้ ChatGPT ทำการ

  • สร้าง call script ให้ทีม customer service หรือ telemarketing ใช้ในการติดต่อกับลูกค้าแต่ละราย
  • เขียน proposal ที่ดึงดูดและมีอิทธิพลต่อการตัดสินใจซื้อของลูกค้า
  • เขียน sales report เพื่ออธิบายสรุปเรื่องต่างๆของการขายและการติดต่อกับลูกค้าไว้

นอกจากนี้ การทำงานร่วมกันของ ChatGPT กับ RPA ยังทำให้งานที่ต้องมีความ personalized ใน scale ใหญ่ เช่น การตอบอีเมลลูกค้าหรือคู๋ค้าจำนวนมาก การสร้าง call script แล้วบันทึกในระบบ CRM ของลูกค้าแต่ละราย เป็นไปได้อย่างมีประสิทธิภาพและไม่ตกหล่น   

จากตัวอย่างที่เราได้กล่าวถึงข้างต้น เราค่อนข้างมั่นใจว่าจะมี Use Cases เหล่านี้เกิดขึ้นอีกมากเมื่อ ChatGPT มีการเรียนรู้และพัฒนาตัวเองเพิ่มขึ้น และสามารถเชื่อมต่อกับ RPA เพื่อให้ได้เป็นระบบงาน automation ที่สร้างคุณค่าต่อองค์กรได้มากกว่าการจัดการกับงานซ้ำๆและมีจำนวนมาก

ก่อนจบบทความนี้ ขอเล่าถึงการต่อเชื่อมกันของ ChatGPT กับ RPA ซึ่ง Automat เราได้ทดลองทำขึ้นมา โดยเป็นการเชื่อมต่อ ChatGPT กับ UiPath RPA ผ่าน Postman development platform ตาม link ด้านล่างนี้

ในตัวอย่างจะเป็นการจำลองการสร้าง personalized sales proposal จาก keywords ที่พนักงานขายเตรียมไว้ใน MS Excel แล้วให้ RPA robot หยิบไปใส่ใน ChatGPT จากนั้นก็นำผลลัพท์ที่เราสั่งให้ ChatGPT เขียนเป็นข้อความมาสร้างเป็น sales proposalใน MS Word และแนบในอีเมลส่งถึงลูกค้าเป้าหมาย

ในฐานะที่ Automat เราได้ศึกษาและให้บริการโครงการพัฒนาระบบงาน RPA มาตั้งแต่ช่วงแรกของการเริ่มใช้งานRPA อย่างแพร่หลายในประเทศไทย เรามองว่าเรื่องนี้เป็นพัฒนาการที่น่าตื่นเต้นที่ได้เห็นการการเชื่อมต่อของ RPA กับ AI model แล้วสร้างประโยชน์หรือ Use Cases ของการใช้งานได้ทันที ซึ่งในอนาคตก็น่าจะมี AI model อย่างอื่นนอกจากเรื่องภาษาที่สามารถนำมาเชื่อมกับ RPA แล้วก่อให้เกิดเป็นระบบงานที่สร้างประโยชน์อีกมากมายต่อการทำงานของเรา

Credit

  1. UiPath Inc.
  2. Evolvous.com
  3. Forbes.com

ปลดล็อคกระบวนการด้านพัฒนาระบบ RPA ด้วย ChatGPT

เล่าเรื่องการเชื่อมต่อ UiPath vs ChatGPT และลองเขียน blog แบบรวดเร็วด้วยเอไอ

บอกไว้ก่อนว่าบทความนี้เขียนขึ้นมาเอง 30% และจากนั้นนำเอา ChatGPT มาช่วยเขียนและปรับเพิ่มเติม (บทแปล ยกตัวอย่าง 70%) ตอนอ่านลองมาเดากันเล่นๆ ได้ครับว่าอันไหนคนเขียน อันไหนโปรแกรมปัญญาประดิษฐ์มาช่วย

ต้นสัปดาห์ที่ผ่านมาได้ทดสอบเอา UiPath ไปดึงเอาข้อมูลลูกค้าใน SalesForce แล้วเราดูว่าถึงกระบวนการต้องให้ทีมขายเตรียม technical proposal ไปนำเสนอลูกค้าหรือยัง ลองนึกว่าถ้าต่อหนึ่งพนักงานขายมีลูกค้าที่ต้องเตรียม proposal สัก 30 คนนี่งานหนักแน่ คลิปด้านล่างเป็นสิ่งที่ผ่านมาทดสอบมาแล้ว (แต่ก็ยังมีต้องมาปรับเพิ่มบ้าง) ตามคลิปการใช้งานสั้นๆครับ (ด้านล่าง)

SalesForce > ChatGPT > UiPath > Sales Proposal

ในช่วงที่ผ่านมา AI ได้เข้ามาเปลี่ยนภาพจากเทคขั้นสูงสู่คนปกติธรรมดา ที่จะใช้มันภาพสรรค์งานได้อย่างรวดเร็ว ง่าย และฟรีๆ พูดได้เลยว่ามันได้เคลื่อนย้ายจากการเป็นเทคโนโลยีระดับสูงไปสู่การเป็นเทคโนโลยีปกติธรรมดาที่ทุกคนเข้าถึง

ในขณะนี้ ทุกคนสามารถใช้ AI เพื่อสร้างศิลปะที่น่าตื่นเต้น เสียงพูดในหนังสือ เขียนบล็อก หรือแม้กระทั่งสร้างภาษาโปรแกรมใหม่จากต้นฉบับ สมมติว่ากลับไปเพียงไม่กี่ปีก่อนแล้วก็บอกเพื่อนร่วมงานของคุณว่าคุณจะสามารถทำทั้งหมดนี้ได้แค่ใช้สมาร์ทโฟนได้เลย ง่ายๆ แบบนี้แหละ 

การเปิดตัว ChatGPT จาก OpenAI – โมเดลภาษาขนาดใหญ่ที่สามารถสร้างข้อความที่เหมือนมนุษย์ได้ – ได้เป็นตัวช่วยขับเคลื่อน ทำให้ผู้คนหลายล้านคนทั่วโลกได้เห็นการเปลี่ยนแปลงของ AI ล่าสุดและมุ่งมั่นไปที่สิ่งที่เป็นไปได้กับโมเดลเหล่านี้ นี่เป็นการก้าวไปข้างหน้าในการทำให้ AI เข้าถึงได้ง่ายขึ้น โดยมีโมเดลพื้นฐานที่มีประสิทธิภาพสามารถใช้สร้างเครื่องมือที่มีค่ามากขึ้นได้อีกด้วย

เลยขอมาเล่าเรื่องที่จะนำเอา RPA +  AI อย่าง ChatGPT มาใช้กันได้อย่างไรในหลากหลายตัวอย่าง

1.ใช้ ChatGPT เพื่อเข้าใจโค้ดของนักพัฒนาอื่น

การใช้ ChatGPT ที่ดีคือการช่วยนักพัฒนาอาชีพในการตอบคำถามเกี่ยวกับโค้ดของนักพัฒนาอื่น มันง่ายเพียงแค่วางโค้ดลงใน ChatGPT แล้วถามให้มันอธิบายว่าโค้ดทำอะไร นี่จะช่วยให้นักพัฒนาแอพพลิเคชั่นเข้าใจภาษาโปรแกรมต่างๆ เช่น VB.Net, SOQL, JQL, LINQ และภาษาโค้ดอื่นๆ

ประโยชน์: ช่วยให้นักพัฒนาสามารถขยายความรู้ของภาษาโปรแกรมที่น้อยใช้มากขึ้น

2.สร้างเอกสารคู่มือโค้ดได้อย่างรวดเร็วด้วย ChatGPT

ChatGPT ยังช่วยบรรเทาความเจ็บปวดจากการสร้างเอกสารผู้ใช้สำหรับโค้ดได้อีกด้วย หลังจากวางข้อมูลทั้งหมดที่เกี่ยวข้องกับระบบของคุณลงใน ChatGPT คุณสามารถถามคำถามที่ผู้ใช้งานส่วนใหญ่อาจมีและนำผลลัพธ์มาใช้เป็นเอกสารของคุณ

ในอนาคตอันใกล้นี้ เวอร์ชั่นขั้นสูงขึ้นของ ChatGPT หรือโมเดลที่เหมือนกันอาจช่วยอัปเดตเอกสารผู้ใช้ได้ด้วย สมมุติว่าคุณสื่อสารข้อมูลเวอร์ชั่นใหม่ล่าสุดของระบบของคุณและมีโมเดลอัปเดตเอกสารที่เกี่ยวข้องกับเวอร์ชั่นใหม่

3.สร้างโค้ดจากคำขอภาษาธรรมชาติ

หนึ่งในศักยภาพที่น่าตื่นเต้นของ ChatGPT คือช่วยให้ผู้ใช้ที่ไม่มีพื้นฐานด้านเทคโนโลยีสามารถกลายเป็นนักพัฒนาได้ด้วย โมเดล AI แบบเจเนอราทีฟช่วยให้ผู้ใช้ทางธุรกิจและผู้พัฒนาที่ไม่มีพื้นฐานด้านเทคโนโลยีสามารถสร้างการทำงานอัตโนมัติจากคำอธิบายที่เข้าใจง่ายของตัวเองได้ เช่น พวกเขาสามารถอธิบายว่าต้องการบันทึกไฟล์ Excel ในโฟลเดอร์ที่กำหนดไว้ แล้วขอให้ ChatGPTเขียนโค้ดเพื่อสร้างการทำงานนี้ให้โดยอัตโนมัติ

นี่คือศักยภาพที่ยิ่งใหญ่ของ AI แบบเจเนอราทีฟที่ช่วยให้ผู้ใช้ทุกระดับสามารถสร้างการทำงานอัตโนมัติเพิ่มเติมและเข้าใจได้ง่ายขึ้นในการทำงานประจำวัน

ประโยชน์: ช่วยให้ผู้ใช้ที่ไม่มีพื้นฐานด้านเทคโนโลยีสามารถสร้างการทำงานอัตโนมัติจากคำอธิบายที่เข้าใจง่ายของตัวเองได้ นำไปสู่โอกาสการพัฒนาที่ต่อเนื่องในองค์กรและอุตสาหกรรม

4.สร้างข้อมูลทดสอบ (Generate test data)

เมื่อนักพัฒนาต้องการเซตข้อมูลทดสอบ เช่นรายชื่อผู้ติดต่อในการตลาด พร้อมกับชุดข้อมูลที่กำหนด (เช่น ชื่อ, เบอร์โทรศัพท์ และที่อยู่) สำหรับรัฐหรือภูมิภาคที่กำหนดไว้ ChatGPT สามารถสร้างชุดข้อมูลปลอมๆ ให้ได้อย่างรวดเร็ว

ตัวอย่างคำสั่ง: “ฉันสร้างแอปพลิเคชันที่จะใช้กับเบอร์โทรศัพท์และที่อยู่ ฉันต้องการข้อมูลต่อไปนี้ไว้ในเรคคอร์ด: ชื่อ, เบอร์โทรศัพท์ และที่อยู่ สร้างตัวอย่างระบุไว้ 30 เรคคอร์ด ในรัฐเวชิงตัน สหรัฐอเมริกา”

สามารถปรับเปลี่ยนคำสั่งตามพื้นที่ที่คุณอยู่หรือเพื่อเฉพาะชื่อที่ขึ้นต้นด้วยตัวอักษร A เพื่อดูว่าแอปพลิเคชันจะสร้างชุดข้อมูลในรูปแบบไหนได้

ประโยชน์: ช่วยเร่งการสร้างชุดข้อมูลทดสอบโดยการสร้างชุดข้อมูลปลอมๆ ที่เป็นไปตามกฎความสอดคล้องตามตรรกะ ทำให้นักพัฒนาประหยัดเวลาและแรงใจ

5.Generate test code for a code sequence

ถ้าเรามี sequence ของโค้ดแล้วต้องการสร้างสคริปต์การทดสอบสำหรับ sequence นั้น ๆ ChatGPT สามารถช่วยและสร้างโค้ดการทดสอบได้ ในภาษาเช่น Python, JSON, C หรือ XAML (หรือแม้แต่แปลงระหว่างภาษาต่าง ๆ)

นอกจากนี้ ChatGPT ยังสร้างข้อมูลการทดสอบที่จำเป็นเพื่อครอบคลุมทุกกรณีทดสอบ

ประโยชน์: ช่วยเร่งความเร็วในการสร้างสคริปต์การทดสอบสำหรับเวิร์กโฟลว์ได้อย่างรวดเร็ว

ในอีกแนวคิดการเชื่อมต่อ UiPaht RPA กับ ChatGPT ในแง่กระบวนการด้านธุรกิจ

1.วิเคราะห์ความคิดเห็นของลูกค้า

การใช้ ChatGPT ในการวิเคราะห์ข้อความและประเมินอารมณ์ของความคิดเห็นจากลูกค้าเกี่ยวกับสินค้าที่เฉพาะเจาะจง เป็นการใช้งานที่สร้างความประทับใจอย่างมาก

เพื่อแสดงวิธีการใช้งาน เราสามารถให้ ChatGPT รับข้อมูลความคิดเห็นจากลูกค้าและใส่รหัสดังต่อไปนี้ “กรุณาระบุอารมณ์ของความคิดเห็นนี้ ให้แบ่งเป็นบวก, ลบหรือผสม” ChatGPT จะตอบกลับมาโดยระบุสีสันของข้อความอย่างต่อเนื่องและแม่นยำ

เรายังสามารถเพิ่มการออโตเมชันเข้าไปได้อีกด้วย โดยที่หุ่นยนต์สามารถส่งรายการความคิดเห็นไปยัง ChatGPT และแบ่งปันรหัสดังกล่าวเพื่อรับคำตอบสำหรับข้อความแต่ละข้อ และนับผลตอบกลับที่เป็นบวก, ลบ หรือผสม โดยการตรวจสอบสีสันของข้อความ การใช้งานด้านนี้จะช่วยให้สามารถประมวลผลข้อมูลจากความคิดเห็นได้อย่างมีประสิทธิภาพ โดยเฉพาะอย่างยิ่งความคิดเห็นที่ไม่ดี ที่สามารถส่งต่อไปยังทีมพัฒนาสินค้าอัตโนมัติได้

2.สร้างอีเมลตอบกลับลูกค้า

การให้บริการลูกค้าที่ดีในเวลาที่เหมาะสมอาจเป็นการท้าทายที่แท้จริงสำหรับธุรกิจ แต่ดีที่แล้ว ChatGPT และหุ่นยนต์ UiPath ช่วยให้ง่ายขึ้น

เราสามารถใช้ ChatGPT เพื่อเขียนอีเมลตอบกลับที่เหมาะสมเมื่อลูกค้ามีความคิดเห็นที่ไม่ดีเกี่ยวกับผลิตภัณฑ์ เราสามารถสร้างกระบวนการอัตโนมัติทั้งหมดได้จากขั้นตอนต่างๆ

เมื่อได้รับข้อเสียหรือความคิดเห็นที่ไม่ดี เราสามารถใช้หุ่นยนต์ส่งข้อความร้องขอและข้อความอีเมลไปยัง ChatGPT เพื่อขอข้อความตอบกลับที่เหมาะสม หุ่นยนต์จะตรวจสอบคำตอบกับทีมสนับสนุนลูกค้าก่อนที่จะแบ่งปันคำตอบกับลูกค้า

ประโยชน์: ปรับปรุงประสบการณ์ลูกค้าและเวลาในการแก้ไขปัญหา

3.การคัดกรองประวัติผู้สมัครงาน

ChatGPT สามารถใช้ในการคัดกรองประวัติผู้สมัครงานและประเมินความเหมาะสมกับตำแหน่งงานได้ ตัวอย่างเช่น หุ่นยนต์ UiPath สามารถส่งประวัติผู้สมัครงาน, รายละเอียดงาน, และคำถามให้กับ ChatGPT และขอคะแนนตัวเลขสำหรับผู้สมัครงาน คะแนนที่ได้จาก ChatGPT สามารถนำมาใช้เป็นการประเมินความเหมาะสมกับงานได้ ช่วยให้เราประหยัดเวลาในการตรวจสอบประวัติผู้สมัครงาน นอกจากนี้ ChatGPT ยังช่วยลดจำนวนผู้สมัครงานที่ไม่เหมาะสมหรือไม่เกี่ยวข้องออกจากกลุ่มตัวเลือกแรก ซึ่งจะช่วยให้การคัดเลือกผู้สมัครงานเป็นไปอย่างรวดเร็วขึ้น

ประโยชน์: ลดเวลาในการกรองประวัติผู้สมัครงานจำนวนมาก

4.สร้างคำถามสัมภาษณ์งาน

ในการขยายธีมการจ้างงาน ChatGPT ยังสามารถสร้างคำถามสัมภาษณ์ที่มีประสิทธิภาพได้อย่างรวดเร็วโดยพิจารณาตามความต้องการของงานและประวัติส่วนตัวของผู้สมัครงาน นอกจากนี้ยังสามารถให้ ChatGPT ประเมินและให้เกรดการตอบกลับของผู้สมัครงานได้หากต้องการ

การสัมภาษณ์และการเลือกคนทำงานเป็นกิจกรรมที่จำเป็นแต่กินเวลาในธุรกิจ แต่ด้วย ChatGPT และหุ่นยนต์ UiPath เราสามารถสร้างกระบวนการอัตโนมัติที่เชื่อมต่อเข้ากับแพลตฟอร์มการรับสมัครงาน ซึ่งจะสร้างชุดคำถามส่วนบุคคลที่กำหนดไว้สำหรับผู้สมัครงานแต่ละคน สัมภาษณ์ที่ดีกว่า คนทำงานที่เหมาะสมมากขึ้น และใช้เวลาน้อยลง

ประโยชน์: ช่วยให้ผู้สัมภาษณ์เตรียมคำถามที่สอดคล้องกับบริบทการทำงาน

5.วิเคราะห์การสนทนาในฝ่ายบริการลูกค้า

หากบริษัทของคุณใช้การสนทนาออนไลน์เพื่อการสนับสนุนลูกค้า ChatGPT สามารถประเมินคุณภาพการสนับสนุนของแต่ละเคสได้ ตัวอย่างเช่น สามารถขอให้ ChatGPT ส่งคะแนนความพึงพอใจกลับมา หากคะแนนต่ำกว่าเกณฑ์ที่กำหนดไว้ หุ่นยนต์จะสามารถส่งเคสนั้นต่อไปยังผู้จัดการเพื่อตรวจสอบได้โดยอัตโนมัติ ซึ่งจะช่วยให้ผู้จัดการสามารถเสริมสร้างการฝึกอบรมทีมสนับสนุนของพวกเขาได้ เรียกใช้การประเมินคำตอบไม่จำเป็นต้องยอมรับว่าถูกต้องอย่างแน่นอน แต่เป็นการช่วยในการประหยัดเวลาที่มีค่าสำหรับการประเมินผลการให้บริการ

ประโยชน์: การประเมินคุณภาพการให้บริการอย่างรวดเร็วและการระบุเคสที่ต้องส่งเคลื่อนไหวได้

What’s Next แล้วไงต่อ ???

หัดใช้ พรอมท์ และเปิดใจเรียนรู้ทำงานไปพร้อมๆกับ General AI ในยุคต่อไป (ในอีกหลากหลายไม่ว่าจะเป็น Meta, Google และอีกหลายค่าย 555)

Generative AI เช่น ChatGPT จะเป็นเครื่องมือที่มีค่าสำหรับนักพัฒนาทุกระดับ การใช้งานหลักในปัจจุบันจะเป็นเมื่อคุณต้องการสร้างสิ่งใหม่ (และไม่สำคัญ!) ตามข้อกำหนดบางอย่าง – หรือ ‘prompts’ เหมือนกับภาษาใหม่ ๆ นี้ การผสมผสานผลลัพธ์เหล่านี้กับการดำเนินการที่เปิดใช้งานด้วยอัตโนมัติจะช่วยให้คุณสามารถแก้ไขกลุ่มของ Use cases ที่น่าสนใจได้อย่างกว้างขวาง สิ่งที่หลาย ๆ องค์กรยังต้องการทำงานกับ Generative AI Tools เหล่านี้ในสภาพแวดล้อมธุรกิจที่สอดคล้องกันและมีการบริหารจัดการที่มั่นคง

Credit:

https://www.uipath.com/blog/ai/leveraging-chatgpt-with-automation-development?utm_source=marketo&utm_medium=blog_weekly_email&utm_content=17february2023&mkt_tok=OTk1LVhMVC04ODYAAAGJ_EnpEZnpRT3bkWeqQrTs1j6YB8hjc7DTvlAJJAYAa4C0v9tmYY2gZkPYdKKjLvS420tTvFZ1qSI-t67md6QTkyrP41rFRGdXUGY7qBdToLXz7Q

มาดูว่ามีอะไรใหม่ ๆ ในเวอร์ชั่นล่าสุดของ 1st RPA Platform จากค่าย UiPath  – What’s New for UiPath Platform 2022.10 

ประยุกต์คีย์ฟีเจอร์ล่าสุดของ UiPath และ RPA Trend 2023

ช่วงปลายปี 2022 นี้ก็ถึงเวลาของบทความแนวพยากรณ์ แนวโน้มอีกสามหรือห้าปีข้างหน้าทยอยออกมาให้อ่านกันพอสมควร แอดมินเห็นว่าเราควรเอาบทความแนว ๆ นี้มาประยุกต์ใช้กับเทคโนโลยีเวอร์ชั่นปัจจุบัน หรือเวอร์ชั่นล่าสุดที่จะถูกเรียกใช้จากผู้พัฒนา หรือ user เอง เพื่อการเรียนรู้ การทดลองใช้และประยุกต์ใช้ให้เกิดประโยชน์

จึงเป็นที่มาของบทความนี้ที่จะใช้ 2 context (แนวโน้ม + ความสามารถล่าสุดของ RPA software) มาเขียนร้อยกันไป ผู้อ่านจะเห็นว่าแนวโน้มที่จะมาในปี 2023-2025 จะถูกตอบสนองได้ด้วยความสามารถ หรือ feature ของ RPA + ai และสุดท้ายผู้อ่านจะสามารถเรียนรู้ และเลือกได้เลยจะใช้ feature ใดมาทำการ digital transformation องค์กร พร้อมแล้วไปอ่านกันเลยครับ (ผู้เขียนขอใช้แนวทางจากค่าย UiPath ที่คุ้นเคยที่สุด)

ปกติทางค่ายผู้พัฒนาจะทำการ launch new feature ในทุก ๆ สองสัปดาห์ แต่หากเป็นการรวบรวมทั้งหมด แล้ว pack มาทีเดียวในเวอร์ชั่น Enterprise ซึ่งมีลูกค้าใช้งานอยู่เป็นจำนวนมากจะทำกันในปลายเดือนเมษายน และปลายเดือนตุลาคมของทุกปี จากนั้นจะเป็นการ GA (general availability) จากฟีเจอร์ทดสอบ ผ่านการทดสอบ และมีเสถียรภาพสูงในที่สุด ในปลายปี 2022 เวอร์ชั่นล่าสุดซึ่งจะถูกใช้ต่อเนื่องไปในปีหน้า การออกแบบถูกทำตามเกณฑ์สี่อย่างดังภาพ (การสร้างระบบอัตโนมัติได้ง่ายดาย รวดเร็ว, การปรับปรุงพัฒนา process สม่ำเสมอด้วย ai, การใช้ ai + RPA ใน usecase ใหม่ และสุดท้ายคือการเลือกการติดตั้งได้อย่างไม่มีขีดจำกัด)

UiPath 2022.10 ภายใต้ 4 แนวคิด

และหากนำเอาคีย์ฟีเจอร์มากควบรวมกับ trend 2023 ดั่งที่ได้เขียนไปในบทความที่แล้ว ภาพอาจจะออกมาประมาณนี้

สรุปออกมาได้เป็น 7 แนวโน้มดังนี้

#1 และ #2 แนวคิดเรื่องนวัตกรรม่รวมไปถึงความเสี่ยง ผนวกเข้าไปในกระบวนการหรือการปฎิบัติงาน ไปพูดถึงการนำเอา RPA+Aiมาใช้ในงานหน้าบ้าน งานหาลูกค้าใหม่ งานบริการรูปแบบใหม่ เช่นระบบ ai อ่านข้อความ ฟังเสียง หรือมองรูปภาพ แล้วตอบโต้หรือคัดแยกนำไปเอาช่วยสร้างกระบวนการใหม่เป็นต้น (youtube chat+ai+RPA = https://youtu.be/9UTW60z8DLQ) เป็นต้น

#3 #4 IT automation & process discovery or test automation เป็นการผนวกเอา ai มาช่วยในการวิเคราะห์กระบวนการ ถ้าหากนำไปเที่ยบกับเครื่องมือพัฒนาจะเป็น UiPath process mining tools หรือ UiPath task mining ซึ่งหลักการคือนำเอา RPA ไปมอง “insight” ที่ระบบหน้าจอ หรือ log file ของ ERP แล้วหาคอขวดในกระบวนการเป็นต้น

#5 #6 และ #7 มองฟีเจอร์ล่าสุดที่จะมาตอบโจทย์เรื่องการ integration เข้ากับ Enterprise Software ได้อย่างรวดเร็ว ง่ายด้วยด้วย UiPath Integration และเครื่องมือ UiPath App ที่เป็น low code ที่เชื่อมกับ automation process ที่สร้างเอาไว้ ทำให้ผู้พัฒนาสร้างได้ง่าย และผู้ใช้ก็ใช้งานได้ผ่านทุกอุปกรณ์เช่น โน้ตบุค มือถือ หรือแม้แต่แทบเล็ต อีกประเด็นคือแนวโน้ม citizen developer ซึ่งอนุญาตให้ผู้ใช้งาน เรียนรู้ผ่าน e-learning และสร้าง app low code หรือแม้กระทั่งโปรแกรมหุ่นยนต์ขึ้นมาใช้ในองค์กรได้เอง แต่อยู่ภายใต้การกำกับดูแล (Governance policy) เป็นต้น ซึ่งหากจะมองไปก็เหมือน UiPath Automation Launcher เป็นต้น

2023 RPA Trends

ภาพแนวโน้ม RPA trend ในโลกธุรกิจ (ที่เขียนไปใน blog ครั้งที่แล้ว = https://bit.ly/3WCg4ZE

ทั้งนี้แอดมินได้ไปเล่นใน FB live กับทาง อ.เวท จากทางสถาบัน 9Expert (https://youtu.be/wE2MhqTAVjE)  มีเนื่องหาที่น่าจะเป็นประโยชน์ ลองตามไปดูในคลิปYoutube กันดูครับ

ในบทความต่อ ๆ ไปจะมาลงลึกถึง key feature ในแต่ละโมดูล ตามที่ได้เกริ่นเอาไว้ในบทความนี้ ไว้พบกันครับ Merry Christmas & Happy New Year 2023

Credit: 

https://docs.uipath.com/action-center/docs

https://www.uipath.com/blog/product-and-updates/2022-10-release-overview