แนวโน้มของ AI & Automation ในปี 2024

เป็นเรื่องปกติไปในแล้วในทุกๆปี ใกล้วาระเปลี่ยนปี จะมี blog หรือเอกสารงานวิจัยมาแชร์เรื่องราวน่ารู้อย่าง แนวโน้มสำคัญที่คนไอทีในวงการต้องรู้ วันนี้มาฟังเรื่อง Trend ของ business automation กันครับ

เป็นเอกสารแชร์จากทาง UiPath Global ที่อ้างอิงถึงสำนักวิจัยดังๆหลายๆที่เช่น Gartner (Magic Quadrant 2023-RPA), Forrester Wave – RPA Q12023 หรือ Mckinsey&Company ในบทความต่างๆ มากมายที่แอดมินตามศึกษา จะบอกออกมานัยยะแนวเดียวกันหมดเลยถึงเรื่องผลกระทบการมาของ “GenAI” ชื่อเต็มๆคือ Generative AI พวก Open.AI (ChatGPT), Google (Bard) และอื่นๆที่จะตามมาในอนาคตอย่างมากมาย

เอกสารช่วยสรุปความออกมาเป็น 7 แนวโน้ม ซึ่งแน่นอนเข้าทาง UiPath ที่เป็นผู้นำในตลาด RPA อยู่แล้ว เหมือนอ่านจบเราแค่ได้รับการยืนยันเพิ่มจากสำนักวิจัยอื่นๆ ว่า “ใช่แล้ว” ถูกทางแน่ๆ ประมาณนี้ มาลองดูที่แอดมินสรุปกันครับ

  1. การรับรู้และซึมซับถึงประโยชน์ของ automation & ai สู่ผู้บริหารระดับสูง อย่างไม่เคยเป็นกันมาก่อน เทรนนี้จะส่งผลถึงการให้ความสำคัญกับทรัพยากร การวางแผนเอา GenAI มาใช้พัฒนากระบวนการทำงาน งบประมาณที่ลงไปกับเรื่องราวเหล่านี้จะถูกตอบแทนด้วยผลลัพธ์ที่หวังเอาไว้เช่นเพิ่มประสิทธิภาพงาน (85%) เพิ่มช่องทางการทำรายได้ใหม่ (52%) ยกระดับงานเดิม (58%) เป็นต้น
  2. แนวโน้มนี้พูดถึง การเลือก use case ที่ดี จะทำให้ “มีชัย” ไปกว่าครึ่ง … ในกรณีนี้คือเหล่า CIO, CEO คงต้องประเมินว่าเมื่อเราให้ความสำคัญและอยากเริ่มต้น และสำเร็จได้อย่างรวดเร็ว ควรเลือก automation + GenAI ที่มีแนวโน้มทำได้เลย และมี ROI สูงๆ โดยในที่นี้มีตัวอย่างที่ #automat เราทำสำเร็จมาแล้วอย่าง IDP (Intelligent Document Processing) โครงการนี้มีส่วนประกอบหลักสามเรื่องคือ RPA + OCR และ AI โดยเราช่วยลูกค้าประหยัดเวลาในการทำงานกับเอกสารด้านการประกันภัยที่มีหลากหลายรูปแบบ ทำให้ลดเวลาและเพิ่มความแม่นยำ นอกจากนี้ยังมี use case อย่างการประยุกต์ใช้ Communication Mining กับกระบวนการอ่านเอกสาร email, text และสัญญาต่างๆ (ใช้ GenAI มาช่วยแยกเยอะ ตีความ และตอบกลับ) เป็นต้น
  3. แนวโน้มที่มาแรงมากๆ อีกและถูกผู้บริหาร ผู้นำในองค์กรโหวตถึง 86% คือการใช้ ai มาช่วยยกระดับการสแกนกระบวนการปัจจุบัน และหา “ช่องโหว่” เพื่อปรับปรุงกระบวนการ ซึ่งในทุกวันนี้มีการใช้งาน process mining tools และ communication mining มาเพื่อจับสัญญาณต่างๆ เปรียบเหมือนเราไปสแกน MRI เพื่อให้ได้ผลวิเคราะห์ที่ถูกต้องแม่นยำมากขึ้น มาใช้ในการพัฒนา ปรับกระบวนการ
  4. จากผลลัพธ์จากแบบสอบถาม 65% มองเรื่องการความจำเป็นในการที่องค์กรจะเริ่มมองหา และใช้งานเทคโนโลยีปัญญาประดิษฐ์อย่าง LLM (Large Language Model) และ Generative AI เสียที หลายๆ องค์กรจะริเริ่ม pilot ในปีนี้เสียด้วยซ้ำ แนวโน้มการใช้ “Co-Pilot” หรือผู้ช่วยการทำงานของพนักงานในทุกระดับ ไม่ว่า business user ที่ไม่มีทักษะไอทีใด ๆ หรือ นักพัฒนาโปรแกรม นักวิเคราห์ปรับปรุงกระบวนการ ซึ่งจากนี้ไปจะมีเครื่องมือจาก UiPath Autopilot มาเป็นเพื่อน ไมว่าคุณอยากจะเทรนโมเดล สอนการ copy-paste ข้อมูลข้ามจากเอกสาร (กระดาษ) ไปลงปลายทางที่หน้าจอระบบ ERP (GUI) ก็ทำได้อย่างง่ายๆ และทำด้วยด้วยภาษามนุษย์เราสื่อสารกับ GenAI เป็นต้น ไว้อันนี้แอดมินจะมาเล่าละเอียดอีกครั้ง
  5. ความสามารถของปัญญาประดิษฐ์ทำให้เกิดแนวโน้มอันนี้ที่ว่าในตัวกระบวนการสร้าง robot เองก็จะ “เก่ง” ขึ้นเรื่อยๆ ตั้งแต่การสร้างโปรแกรมด้วยการสั่งงาน (ไม่ต้องเริ่มด้วยการโค้ด) การรู้ตนด้วยการรู้สถานะตนเองของโรบอทว่าทำงานได้ปกติดี หรือต้องการปรับปรุงส่วนใด ๆ ระบบจะนำแนะออกมาให้นักพัฒนา และสุดท้ายคือการเทรนโมเดลที่ทำได้ด้วยความรวดเร็วกว่ายุคก่อนด้วยเทคนิคใหม่ๆอย่าง GenAI เป็นต้น ซึ่งอันนี้จะเป็นแค่การเริ่มต้นในปีหน้า แต่จะต่อยอดอย่างเข้มแข็งเป็นเทรนหลักในปีต่อๆไป
  6. จริยธรรม ธรรมมาภิบาล รวมไปถึงกฎเกณฑ์การใช้เอไอได้ หรือไม่ได้จะถูกกำหนดขึ้นมาจากองค์กร แรงกระเพื้อมอันนี้จำเป็นอย่างยิ่งในยุคเอไอถูกใช้จากคนในทุกระดับ เพราะเราต้องมี platform ที่แข็งแรง มีการเก็บข้อมูลการใช้งาน เอามาวิเคราะห์และตั้งกฎตั้งค่าการใช้ให้ปลอดภัย และไม่ไปละเมิดกฎเกณฑ์ใดๆ ที่มนุษย์เราตั้งขึ้นมาด้วย การทำงานร่วมระหว่างมนษย์และหุ่นยนต์ในลักษณะ “ผู้ตรวจงานโรบอท” จะเป็นแนวโน้มหลักจากนี้ไป ทำให้เทรนอันนี้จำเป็นต้องมีผู้รู้ที่เคยทำมาก่อน มี best practice ที่ดีมาช่วยแนะนำด้วย
  7. แนวโน้มการต้องยอมรับการเปลี่ยนแปลงด้วยการ force จากปัญญาประดิษฐ์ ความสามารถของมันในการทำงานแทนมนุษย์เรา ด้วยทักษะของ LLM ที่ปัจจุบันก็แทบจะทำได้ 70-80%ในงานนั้นๆอยู่ จะเกิดอะไรในปี 2030 เมื่อ กระบวนการทั้งหมดจะถูกปรับเป็นระบบอัตโนมัติด้วยโรบอต เกิดการทำงานร่วมกันของมนุษย์และหุ่นยนต์  แนวคิดของการ “นิยาม” การทำงานใหม่ๆ จึงเกิดขึ้นเช่น การเรียนรู้จากผู้เชี่ยวชาญในรูปแบบใหม่ๆ การนำเข้าประสบการณ์ใหม่ใหม่ควบรวมกับประสิทธิภาพของปัญญาประดิษฐ์ การออกกฎเกณฑ์มาควบคุมและดูแลในระดับสังคมโดยรวม และสุดท้ายคือการพัฒนาทักษะใหม่ใหม่อาทิเช่น prompt engineers ที่อาจจะมาแทนที่ทักษะการเขียน code เป็นต้น ในปีหน้าน่าจะมีอะไรใหมๆ มาเพิ่มเข้าไปอีก หวังว่าทุกคนจะเรียนรู้ และสนุกไปกับมันกันครับ

ในปีหน้าน่าจะมีอะไรใหมๆ มาเพิ่มเข้าไปอีก หวังว่าทุกคนจะเรียนรู้ และสนุกไปกับมันกันครับ

Source:

https://www.uipath.com/resources/automation-whitepapers/automation-trends-report

“อะไรใหม่อะไรมา” กับการดึงประสิทธิภาพสูงสุดจากระบบอัตโนมัติ – บทความเรื่อง Automation 2023 

แนวโน้ม automation ในยุคปี 2023

เข้าใกล้วาระช่วงปลายปี ก็จะมีบทความในเชิงการรวบรวมข้อมูล การพยากรณ์ถึงแนวโน้มต่าง ๆ ออกมาให้อ่านกัน วันนี้แอดมินขอหยิบเอา blog จากค่าย UiPath RPA ที่เค้าไปรวบรวมเอาข้อมูลจากหลากหลายแหล่ง อาทิเช่น Gartner, Everest, IDC, McKensey, Lenovo และอื่นๆ มาสรุปเล่าเป็นแนวโน้มของระบบอัตโนมัติขึ้นมา 7 แนวโน้ม สรุปเอามาเล่าสั้น ๆ กันครับ 

เก่าไป ใหม่มา… เมื่ออ่านจบคิดว่าน่าจะได้ประโยชน์สามเรื่องคือหนึ่งเราจะรู้ว่าเครื่องมือตัวนี้มีผลกระทบอย่างไรหากนำไปใช้อย่างถูกต้อง สองปัญญาประดิษฐ์ดูเหมือนจะเป็นตัวยกระดับการใช้งาน และสามผลกระทบและแนวทางปฎิบัติต่อผู้ที่เกี่ยวข้องเช่น CEO, CHRO, CIO เป็นต้น ไปอ่านกันครับ

automation trend 2023

สรุปออกมาได้เป็น 7 แนวโน้มดังนี้

#1 แนวคิดเรื่องนวัตกรรม ผนวกเข้าไปในกระบวนการหรือการปฎิบัติงาน จากการใช้ automation ในหน่วยงานขยายเป็นแผนก ขยายต่อข้ามแผนก (เชื่อมเข้าหากัน) จากแนวคิดเพียงลดภาระงานเป็น เพื่อให้ได้ “สิ่งใหม่” ที่เร็วกว่า ดีกว่า ถูกกว่า ประทับใจลูกค้ามากกว่า

#2 เมื่อโลกธุรกิจมีความเสี่ยงแบบไม่เคยมีมาก่อน ภาวะเงินเฟ้อรุนแรง แรงงานขาดแคลน เมื่อองค์กรคิดแบบ automation 1st จะมาช่วยสองด้านคือเพิ่มประสิทธิภาพการทำงานทันที และเพิ่มแรงดึงดูดกับพนักงานใน generation ใหม่ที่มองเครื่องมือที่จะเป็นตัวช่วยกับองค์กรในฝันของพวกเขา

“จากการสัมภาษณ์การทำงานที่ USA มีพนักงานในสหรัฐอเมริกาถึง 72% ที่ต้องการถ่ายโอนงานทั่วไปต่าง ๆ อาทิ การบริหารจัดการใบแจ้งหนี้ ตรวจสอบบัญชี หรือการทำรายงานเบื้องต้นให้กับระบบ AI เพื่อให้พวกเขาจะได้เน้นการทำงานที่จะเติบโตได้มากขึ้น เป็นต้น”

#3 หมดยุคสำหรับการทำเพื่อให้ระบบ IT ในองค์กรทำงานได้ไม่ติดขัด แต่ CIO ในยุคใหม่ต้องมีความรับผิดชอบมากกว่านั้น เช่นการช่วย CEO, CFO ในแง่การสร้างผลลัพธ์ในรูปแบบใหม่ ๆ โดยประยุกต์ใช้ “นวัตกรรม” เช่นการประยุกต์ใช้ automation เพื่อลดต้นทุนเวลา ลดต้นทุนแรงงาน เพิ่มความเร็วสำหรับโครงการ ซึ่งระบบ automation จะมาตอบโจทย์ได้เร็วกว่าเทคโนโลยีอื่น ๆ 

#4 ซึ่งจำเป็นใหม่ ๆ สำหรับองค์กรในยุคดิจิตอล อาทิ process mining (เครื่องมือที่ใช้ ai ช่วยขุดค้นหากระบวนการที่เป็นคอขวด ต้นตอของปัญหาที่มองไม่เห็น กระบวนการที่ข้ามระบบ ข้ามแผนก หรือข้ามบริษัทเป็นต้น) และautomation testing ที่จะมาช่วยให้การสร้างระบบใหม่เร็ว ขยายได้ไม่จำกัด ถูกต้องแม่นยำเพื่อนำไปใช้งาน

#5 เครื่องมือในยุค 2023 เอื้ออำนวยให้พนักงานที่ไม่มีทักษะ IT สามารถสร้างสรรค์ automation process หรือแม้แต่ application ได้ด้วยตัวเค้าเอง ไม่ต้องไปร่ำเรียนใช้เวลามากมาย ด้วยเครื่องมือ low-code ภาระงานที่เคยตกอยู่กับหน่วยงาน IT หรืองานprogrammer จะหายไปเยอะมาก

#6 เมื่อ ai เพิ่มความสามารถในงาน automation มากขึ้นไปอีกด้วยการนำ NLP มาใช้  (Natural language processing – ความสามารถของโปรแกรม ในเข้าใจความหมายของข้อความ และเสียงเหล่านั้นแบบสมบูรณ์ได้เหมือนกับที่มนุษย์ทำ อีกทั้งยังสามารถที่จะประเมินและเข้าใจถึงเจตนาได้อีกด้วย) อีกทั้งการเรียนรู้ประเภทเอกสาร แยกแยะข้อมูลอัตโนมัติ ก็เพิ่มและเก่งขึ้นเรื่อย ๆ 

#7 ทักษะดิจิตอล จะกลายเป็นแหล่งขุมทรัพย์สำหรับองค์กรยุคใหม่ ทั้ง CIO และ CHRO ต้องทำงานร่วมกันเพื่อช่วยการสร้าง สอน ถ่ายทอดทักษะนี้เพื่อการเติบโตในยุคดิจิตอลต่อไป

Credit: 

https://www.uipath.com/resources/automation-whitepapers/automation-trends-report

https://www.adpt.news/2022/11/24/report-72-of-us-workers-want-to-delegate-simple-tasks-to-ai/?

From Research Paper – Magic Quadrant for Robotic Process Automation

เอกสารประจำปี บอกเล่าเรื่องผู้เล่นในตลาด RPA นวัตกรรม ฟีเจอร์ที่ต้องมีในปัจจุบัน แนวโน้มในอนาคต ขนาดตลาด และจัดลำดับผู้เล่น (ข้อดี ข้อต้องปรับปรุง)

เอกสารที่หลาย ๆ คนที่สนใจผลิตภัณฑ์ซอฟต์แวร์ ในตลาดไอทีต้องเคยตามอ่าน และก็เช่นกันในเดือนที่แล้วบริษัท Gartner เองก็ได้ปล่อยเอกสาร (หาโหลดได้ในอินเตอร์เน็ต) นี้ออกมาเพื่อบอกเล่าเรื่องราวต่าง ๆ ในซอฟต์แวร์แคตตาล็อกที่ชื่อ RPA ครับ ซึ่งในบทความจะเล่าแนวโน้มเครื่องมือ RPA รวบรวมข้อดี ข้อที่ต้องปรับปรุงให้ดีไปอีกของแต่ละค่าย ซึ่งผู้เขียนคงไม่ได้บอกว่า software RPA ค่ายไหนดีที่สุด เพราะสินค้าที่เหมาะกับองค์กรต้องเหมาะไปด้วยสามเรื่องครับ (ตามความเห็นแอดมินนะ)

  • สินค้า บริการไอที ที่ซื้อมาแล้วใช้ได้ และคืนต้นทุน (ROI) ได้ในระยะเวลาไม่เกินหนึ่งปี
  • สินค้ามีความยืดหยุ่น ปรับเปลี่ยนได้และเมื่อต้องต่อขยาย scope ออกไปก็ต้องทำได้ดี
  • บริการไม่ต้องใหม่เกินไป แต่ต้องพิสูจน์ว่าใช้ได้จริง และหานักพัฒนาบ้านเรา (คนไทย) มาต่อยอดออกไปได้เพื่อให้มันเข้ากับ process ของเราจริงๆ

มาดูภาพนี้กันเถอะ

credit: Gartner, Magic Quadrant for Robotic Process Automation, by Saikat Ray, Arthur Villa, Melanie Alexander, Keith Guttridge, Andy Wang, Paul Vincent , 25 July, 2022

แกนด้านแนวดิ่ง มองเรื่องการขยายตลาด จำนวนผู้ใช้งาน ประสบการณ์การใช้งาน จำนวนผู้ให้บริการ และแกนแนวนอนมองเรื่องฟีเจอร์ ฟังก์ชั่นที่เป็นนวัตกรรม โมเดลด้านธุรกิจที่ดี การวางกลยุทธของค่ายนั้นๆ เป็นต้น ซึ่งก็จะแบ่งเป็นสี่แกน โดยปกติแอดมินก็จะทยอยติดตามอ่านและพยายามหาซอฟต์แวร์มาทดลองเล่น สอบถามคนที่รู้จักให้ได้มากที่สุด ซึ่งมีทั้งค่ายจากยุโรป อเมริกา ญี่ปุ่น จีน ทั้งค่ายที่เก่าแก่ มาแต่แรก ๆ ไปยังค่ายที่เพิ่งปรับตัวมาจากแคตตาล็อกบริการอื่น ๆ 

ในบทความยังพูดไปถึงเรื่องการเจริญเติบโตของ RPA ในแง่รายได้ (โตไปถึง 31%) ซึ่งโตกว่าค่าเฉลี่ยซอฟต์แวร์ (ปกติ 16%) และแนวโน้มเรื่องการใช้ APIs ควบคู่ไปกับการจับภาพจากหน้าจอ (scraping) เพื่อไปทำ automation process แบบเดิม มองไปถึงเรื่อง Integration API-first อันนี้ถูกผลักดันค่ายค่าย pure RPA เช่น UiPath เป็นต้น

มีการขยายตลาดกันด้วยการซื้อคู่แข่งมาอยู่ในค่าย (เป็นพวกกันเลย) เช่น SalesForce.com ซื้อ Servicetrace หรือค่ายที่มีลูกค้าในไทยใช้อย่าง Kryon RPA ก็ถูก Nintex ซึ่งเป็น BPM รายใหญ่ซื้อไป และยังมีอื่น ๆ อีกครับ

มองข้ามไปในปี 2024 ทุกค่ายในหมวดนี้ต้องไปในแนว APIs integration และค่ายผู้นำไปเน้นไปทำ automation นอกไปจากdesktop PC เช่น web, mobile หรือแม้กระทั่งเรื่อง voice interface กันครับ (ตื่นเต้นจริง ๆ)

บทความหน้า จะมาเล่าผู้นำในตลาดอย่าง UiPath RPA platform ว่าทำไปถึงไปอยู่ในแกน leader ได้ (นำโด่งขนาดนั้น) ติดตามตอนต่อไปครับ

Credit: 

https://www.gartner.com/reviews/market/robotic-process-automation-software

https://www.uipath.com/resources/automation-analyst-reports/gartner-magic-quadrant-robotic-process-automation

Gartner, Magic Quadrant for Robotic Process Automation, by Saikat Ray, Arthur Villa, Melanie Alexander, Keith Guttridge, Andy Wang, Paul Vincent , 25 July, 2022.

มองกระบวนการงาน HR  เมื่อโจทย์เปลี่ยน ตัวช่วยมีอะไรบ้าง? – RPA for Human Resource #1

ปฎิเสธไม่ได้ว่าหนึ่งในฟันเฟืองสำคัญของการดำเนินธุรกิจ งาน Human Resource (HR) เป็นหน่วยงานที่สำคัญโดยหน้าที่หลักน่าจะเป็นการ “ค้นหา” และ “รักษา” พนักงานที่มีคุณภาพสูงในเวลาที่ต้องการเพื่อตอบโจทย์โลกธุรกิจที่ขับเคลื่อนด้วยภาวะที่ไม่เหมือนยุคก่อนโควิด

บทความในซีรี่ย์นี้จะแบ่งออกเป็นสามตอน โดยผู้เขียนจะเน้นเล่าเรื่องผลสรุปงานวิจัยการทำงานในโลกอนาคต แยกออกมาเป็นงานด้าน HR แบบเฉพาะเจาะจง และตัวช่วยงาน HR ในด้านเทคโนโลยีใหม่ๆอย่าง ai และ RPA ดังนี้

  • โลกการทำงานที่เปลี่ยนแปลงหลังยุค covid-19 “Hybrid Work Model” และคำทำนายถึงฉากทัศน์สี่รูปแบบ และตัวช่วยเรื่องเทคโนโลยี 
  • Robotic Process Automation for HR team – ระบบ RPA สำหรับทีมงาน HR
  • Prioritize HR process with RPA tools (Heatmap tools) คัดสรรกระบวนการ​ HR โดยนำหุ่นยนต์มาเป็นตัวช่วย

ผู้เขียนอ้างอิงงานวิจัยของ ดร.การดี เลียวไพโรจน์ จากสถาบันวิจัย FutureLab  (https://www.futuretaleslab.com/th/topics/futureresearch/article/future-of-work) ได้ออกมาแชร์งานวิจัยถึงเรื่องอนาคตของการทำงาน (Work) ในยุคต่อไป

สัญญาณการเปลี่ยนแปลง (Signals of change) เหตุการณ์แนวโน้มที่ก่อตัวและเกิดขึ้นจนเป็นแรงผลัดแรงดัน เช่น

  • เทคโนโลยีที่จะมาช่วยแบ่งเบาภาระหน้าที่คนทำงานเช่น AI หรือ Robots Co-workers
  • Ai เสริมการทำงานของผู้เชี่ยวชาญ มาช่วยคิดช่วยตัดสินใจแทนมนุษย์
  • เครือข่ายใหม่ๆ เช่น 6G รองรับการทำ IOT และหรือการสวมชุดทำงานเฉพาะทาง

ปัจจัยขับเคลื่อนหลัก (Key Driver for change) เช่น 

  • พฤติกรรมที่เปลี่ยนเพราะแรงงานเปลี่ยนแปลงไปอย่างมาก อายุ แนวความคิด ทัศนคติ ความคาดหวัง
  • การทำงานที่ออกแบบเองจากผู้ปฎิบัติงาน (ไม่ง้อนายจ้างแล้ว)
  • การทำงานควบคู่ไปกับ ai ชั้นสูง
  • การวัดผลการทำงานแบบใหม่ เช่น Agile การแบ่งงานเป็นชิ้นๆเล็กๆ ซึ่งอาจส่งผลให้ความจงรักภักดีต่อองค์กรน้อยลง หรือหายไป 

ทั้งหมดทั้งหลายเป็นผลให้เกิดการคาดคะเนฉากทัศน์ (Scenarios) เป็นสี่รูปแบบซึ่งไล่ตั้งแต่แย่ทีสุดไปถึงดีที่สุด (get out human “คนตกงาน สังคมเลวร้าย” – Monday again “คนไม่พัฒนา สังคมเหลื่อมล้ำ” – happy work & life “ประยุกต์คนและเทคโนโลยีเช่น ai ได้สำเร็จ คนพัฒนา มีความสุขในการงาน” – UBI as a Life Funder “ขั้นสูงสุด สังคม เศรษฐกิจ การเมืองสู่ยุคคุณภาพชีวิตสูงสุด”)

ผู้เขียนคิดเสมอว่าไม่มีอะไรแย่หรือว่าดีที่สุด จึงมองไปว่าฉากทัศน์ที่ใกล้ตัวทีสุด ณ​ ปัจจุบันและมองไกลไปสักหน่อยสำหรับ 5-10 ปี โดยเฉพาะในประเทศไทยเราน่าจะเป็น Scenario ที่ 2,3 (ฉากทัศน์สุดท้ายคงไม่เกิดในประเทศเรา หากยังเดินไปข้างหน้าด้วยสปีดในแบบปัจจุบัน) ดังนั้นการทำงานแบบผสมผสาน “Hybrid Work” จะเกิดขึ้นอย่างทันทีหลังเหตุการณ์ covid-19 และจะเดินหน้าเปลี่ยนแปลงวิธีคิดการทำงานทุกอย่างตั้งแต่นายจ้าง พนักงาน คู่ค้า ลูกค้า และแน่นอน HR ก็ต้องถูกกดดันไปด้วยในตัว

เมื่อสถานการณ์โควิดเป็นทั้งแรงผลักและแรงดัน รวมไปถึงขับเคลื่อนอย่างรวดเร็วสู่การทำงานแบบรีโมท (ทำงานจากระยะไกล เช่นจากที่บ้าน co-working space) แต่ไม่ใช่ทุกคนจะหลงรักการทำงานในรูปแบบนี้เพราะหลาย ๆ งานมันยากมากขึ้น ใช้เวลามากขึ้นกว่าจะเช็คกว่าจะเคลียร์ความเข้าใจกับเพื่อนร่วมงานและนำข้อมูลเข้าประมวลผล เป็นผลให้งานวิจัยมากมายอย่างของ Saleforce research บอกเลยว่า 64% อยากกลับเข้าทำงานในออฟฟิศ (ในรูปแบบเดิม) เป็นที่มาของแรงบีบให้ผู้บริหารต้องปิดตา เปิดหู รับฟังมากขึ้นและต้องจัดเตรียมทรัพยากรในการรองรับการทำงานในรูปแบบใหม่ “Hybrid working” ให้ดีที่สุดดังตัวอย่างจากประเทศสหรัฐอเมริกาเรื่องการลงทุนด้านไอทีดังนี้

  • เครื่องมือสำหรับพนักงานในการประชุม online (72%)
  • ระบบรักษาความปลอดภัยในการเชื่อมต่อต่าง ๆ (70%)
  • การฝึกอบรมสู่พนักงานในการประชุม ทำงานรูปแบบ online (64%)
  • ปรับห้องประชุมเพื่อรองรับการทำ virtual connectivity มากขึ้น (อุปกรณ่ต่าง ๆ ในห้องประชุม การถ่ายทอดสด และอื่น ๆ)(54%)

อนาคตอันใกล้คำว่า “Hybrid work” จะเป็นสิ่งที่ทุกคนคุ้นเคยอย่างแน่นอนเนื่องด้วยปัจจัยที่กล่าวไปข้างต้น โจทย์จึงมาอยู่ที่ผู้บริหารต้องวางแผนการทำงานในรูปแบบนี้ให้มีประสิทธิภาพมากที่สุด ทั้งนี้ไม่ใช่คิดแค่ desktop PC สำหรับโต้ะพนักงาน และ notebook สำหรับแจกเพื่อให้ทำงานจากที่บ้านแค่นั้น แต่ต้องรวมไปถึงการคิดนอกกรอบอื่น ๆ เพิ่มขึ้นไปด้วยเช่นการวางแผนงบประมาณ การสนับสนุนการทำงานในรูปแบบใหม่ซึ่งต้องพิจารณารูปแบบว่า technology ที่องค์กรใช้อยู่ในปัจจุบันรองรับทั้งหมดหรือไม่ซึ่งพระเอก ณ ตอนนี้น่าจะเป็นระบบ cloud infra รวมไปถึงบริการ managed service ทั้งหลายที่จะมาช่วยองค์กร (การลงทุนใน hardware, software จะหดหายไปบ้าง) ระบบรักษาความปลอดภัยเองก็จำเป็นต้องถูกอัพเกรดให้แข็งแกร่งมากขึ้นไปตามสถานการณ์

และแน่นอนพระเอกคนสำคัญที่จะมาช่วยให้การทำงานในแบบ Hybrid Work รวดเร็วขึ้น ผิดพลาดน้อยลง ไม่เปลี่ยนแปลงแนวปฎิบัติมากมายนักคงเป็นระบบ “automation” อย่างที่สถาบันวิจัย Forrest research กล่าวไว้ว่า “เมื่อสถานการณ์โรคระบาดคลี่คลายลงไป องค์กรจะถูกปรับโครงสร้างอย่างรุนแรงด้วยความจริงที่ว่าพนักงานสามารถทำงานได้จากนอกออฟฟิศ ระบบอัตโนมัติจะเข้ามาปรับทรัพยากรที่ไร้คุณค่า จัดกระบวนการทำงานใหม่ให้องค์กรพร้อมสำหรับโลกธุรกิจใหม่”

ความจริงนี้ถูกส่งผ่านการลงทุน การ implement ระบบ RPA ในองค์กรใหญ่ๆมากมายโดยมีมากกว่า 56% ที่ใช้ระบบนี้อยู่ (และจะพัฒนาต่อไป) อีก 17% วางแผนจะใช้งานในปีหน้า และ 8% วางแผนจะใช้ในอีกสองปี นั่นหมายถึงการ shift to hybrid work model เกือบจะทั้งหมด … ลองคิดดูหากท่านยังไม่ได้พิจารณาในเรื่องราวเหล่านี้ในองค์กรของท่านจะถูกทิ้งห่างไปไกลขนาดไหน

common business process for RPA (potential)

ในบทความหน้าผู้เขียนจะมาขยายความของ RPA หรือระบบอัตโนมัติโดยเจาะไปที่งาน Human Resource ไว้รอติดตามกันครับ ขอบคุณครับ

Source:

https://www.futuretaleslab.com/th/topics/futureresearch/article/future-of-work

https://www.uipath.com/blog/digital-transformation/hybrid-work-model-needs-new-tech-stack

เพิ่มพลังโรบอทด้วยเอไอ #1 AI in Manufacturing

ผู้เขียนเพิ่งได้มีโอกาสเข้ารับฟัง webinar session ที่จัดโดย UiPath ในงาน AI Summit 2022 ซึ่งจัดขึ้นทุกปีโดยปีนี้เป็นแบบ online มี session น่าสนใจมากมายซึ่งหนึ่งในนั้นเป็น break out session by industry แยกเฉพาะธุรกิจกันไปเลยว่าแต่ละภาคนั้นใช้ AI มาผลักดันให้ RPA ทำงานได้ดีมากขึ้นแค่ไหน use case ดี ๆ และแน่นอนบทเรียน ประสบการณ์ก่อน หลังการใช้ AI ได้ถูกแบ่งปันผ่านมาด้วย วันนี้เลยขอเอามาสรุปสั้น ๆ เพื่อเป็นประโยชน์กับผู้อ่านในภาคอุตสาหกรรมนั้น ๆ ครับ

โดยมีการแบ่งเนื้อหาเป็นสองเรื่องหลัก ๆ คือ แนวโน้มการใช้งาน ai + rpa ในภาคอุตสาหกรรม และการแบ่งปัน use case บทเรียนจากองค์กรที่ทำจริง ๆ และเนื้อหาที่ผ่านไปให้คิด ทำพัฒนากันต่อ … ในตอนแรกจะบอกไปถึงสาเหตุเริ่มต้นว่าทำไมโรงงานอุตสาหกรรมถึงต้องมาทำ automation โดยหลาย ๆ ที่เริ่มจากอยากช่วยพนักงานให้ทำงานเท่าเดิม แต่ได้งานเพิ่มขึ้น การเชื่อมต่อไปยังการเข้าถึงลูกค้าในช่องทางต่าง ๆ รวมไปถึงกระบวนการภายในและภายนอกในกระบวนการ SCM และสุดท้ายคือต่อยอดไปเรื่อง R&D ของทั้งสินค้าและบริการทั้ง ecosystems โดยตัวแนวโน้มจะเอ่ยไปถึงการใช้งานข้อมูลจำนวนมหาศาลถึง 1.812 petabytes (จะบอกว่าภาคโรงงานนี้ใช้ดิจิตอลเยอะมาก ๆ) มีมากกว่า 27% ที่ประยุกต์ใช้ ai จนสร้างมูลค่าเพิ่มได้แล้ว การนำเอา ai ไปใช่การพยากรณ์ที่จะแม่นยำมากขึ้น และสุดท้ายจะส่งผลให้ประสิทธิภาพของการผลิตโดยรวมดีขึ้นถึง 45%-60% นั่นเอง

มีเคสที่มาแชร์จำนวน 3 เคสจากยุโรป (REHAU, BSH และ Drager) ทั้งสามเป็นบริษัทในอุตสาหกรรมเฟอร์นิเจอร์ โพลิเมอร์ และสุดท้ายคือบริษัทผลิตอุปกรณ์ช่วยหายใจ ป้องกัน ตรวจจับ และวิเคราะห์ก๊าซจากเยอรมัน โดยทั้งสามองค์กรมีพนักงาน 15,000-60,000 คนขึ้นไป ทำการผลิต OEM การตลาดไปทั่วยุโรป และเอเชีย

REHAU (https://www.rehau.com/group-en/about-us)

  • นำเอา ai มาช่วยในการ automate ระบบ sales order จากข้อมูลที่ไหลผ่านมาทาง email, fax และแน่นอนไม่มีรูปแบบที่แน่ชัด
  • เหตุผลที่นำมาพัฒนาใช้งานเนื่องด้วยปริมาณการสั่งซื้อเข้ามามาก รับงานไม่ทัน และในขณะที่ไม่ต้องการว่าจ้างทีม sales admin มาเพิ่มเป็นต้นทุนที่สูง
  • โดย 25% เป็นคำสั่งซื้อที่มีความซับซ้อนจากแผนกโครงการ และ 6% เป็นจากการขายเฟอร์นิเจอร์
  • ความท้าทายในโครงการนี้คือการขาดความรู้ ทักษะสำหรับคนภายในทีม จึงไปติดต่อที่ปรึกษาที่เชี๋ยวชาญมาไกด์ การใช้งาน UiPath Document Understanding ในรูปแบบที่ไม่ใช่ Pre-Built ต้อง Train Model ใหม่ รวมไปถึงจำนวนเอกสารที่ให้ ML training ก็ต้องมีปริมาณในระดับหนึ่ง
  • ในอนาคตมองเรื่องการขยายการใช้งาน ai ในการอ่านเอกสารเพิ่มเติมนอกจาก order เป็น Shipment Tracking Status, Freight Invoice audit, HR process รวมไปถึงการประยุกต์ใช้ ai chatbot อีกด้วย

B/S/H (https://www.bsh-group.com)

  • บริษัทร่วมทุนยักษ์ใหญ่ในยุโรป ที่ผลิตเครื่องใช้ในบ้าน Bosch, GmbH และ Siemens AG
  • เริ่มศึกษา พัฒนาทีมพัฒนาคนในด้าน data science ปี 2017 จนในปี 2021 มี data science use case มากกว่า 20 เคส มีCitizen Data Scientists มากกว่า 400 คน 
  • เมื่อทีมพร้อม และได้มาพบกับ RPA technology จาก UiPath ทำให้เกิด POC ที่ประสบผลสำเร็จเหมือนเจอกันถูกตัว
  • ปัจจุบันใช้งาน RPA มาช่วยในกระบวนการมากกว่า 100 process เลยทีเดียว
  • เริ่มเอา ai มาใช้ควบคู่เพื่อยกระดับการใช้ RPA มีการนำเอา ai ในรูปแบบText Classification for Quality Management Production (text mining) ai ช่วยอ่านเอกสารข้อมูลแนะนำ ปรับปรุงผลิตภัณฑ์ แยกหมวดหมู่และส่งต่อให้คนที่เกี่ยวข้อง, ai ด้าน internal chatbot ในองค์กร
  • เริ่มใช้ UiPath Document Understanding มาใช้แยกแยะ อ่าน และนำเข้าข้อมูลอีกด้วย
Text Classification

Dräger (https://www.draeger.com/th_th/Home)

  • ตั้งทีมในรูปแบบเล็ก ๆ แต่มี core team (HQ and Int) กำหนดนโยบาย และคอยช่วยตรวจสอบ (monitoring )กระบวนการที่ทำโดย RPA Dev จากบริษัทในประเทศนั้น ๆ มี (RPA Developer and Process Owner) คอยพัฒนาทดสอบ และใช้งาน
  • เริ่มจาก 14 RPA process ในปี 2018 จนมาถึง 82 RPA process ในปัจจุบัน
  • มองเป็น step จาก 4 step model for intelligent process automation
    • Robotic process automation (ทำได้แล้ว)
    • Cognitive automation (กำลังพัฒนา)
    • Digital Assistants (วางแผน)
    • Autonomous Agents (วางแผน)
  • ริเริ่มการใช้ DU (Document Understanding) โดยเป็น intercompany invoice ก่อน
  • ใช้ DU ดึงเอา contract no. แล้วสร้าง RegEx Extractor ดึงข้อมูลมาใช้งาน
  • ใช้ DU ดึงข้อมูลเอกสารมาทำ Order Entry ในระบบ Microsoft NAV
UiPath Document Understanding – ai

ทั้งนี้ผู้เขียนมีความเห็นว่ายิ่งมีการพัฒนาองค์ความรู้ทางด้าน ai มาผนวกเข้ากับความรู้ด้านการพัฒนากระบวนการ RPA ได้มากขึ้น จะทำให้เราใช้เทคโนโลยีเพื่อออกแบบกระบวนการ (ใหม่) ที่จะสั้น กระชับรวดเร็ว ตรวจสอบได้และไม่ต้องใช้แรงงานมนุษย์มากขึ้น สรุปคือ ai + rpa จะเป็นเทคโนโลยีที่จะก้าวหน้าขึ้นไปอีกดังนั้นผู้อ่านก็ควรติดตาม และพัฒนาทักษะตามไปด้วยกันครับ

แหล่งที่มา

https://gateway.on24.com/wcc/eh/3423204/lp/3644042/breakout-session-ai-in-manufacturing

https://www.uipath.com/events/ai-summit

10 คำทำนายแนวโน้มระบบ RPA ในปี 2022 #3 (ตอนจบ)

ต่อจากบทความที่แล้ว ขอพูดถึง 3 แนวโน้มที่เหลือจาก 10 Trend ของโลก RPA ซึ่งถือเป็นภาคจบของซี่รี่ย์ #RPATrend นะครับ

Trend #8: automation เพื่อโลกสีเขียว

แนวคิดไอทีเพื่อสิ่งแวดล้อมกำลังเป็นเรื่องที่ถูกหยิบยกมาคุยในเวทีโลก และเมื่อพิจารณาถึงระบบ automation ในรูปแบบที่จะมาช่วยเติมเต็มในเรื่องนี้จะเห็น use case อยู่พอสมควรอาทิเช่นใช้ระบบบ RPA ตรวจสอบดูสถานะการทำงานของ data center หรือCloud เมื่อมีการถูกเรียกใช้งานน้อย ระบบอาจปิดการทำงานบางอย่างที่มีผลต่อการประหยัดพลังงานไฟฟ้าอย่างมีนัยยะได้ หรือการใช้ RPA low-code มาในกระบวนการที่ต้องใช้กระดาษ (เอกสารในการอนุมัติขั้นตอน) เพื่อประหยัดการใช้กระดาษ หรือไม่ต้องใช้เอกสารใด ๆ ในกระบวนการอีกเลย ทุกอย่างใช้ RPA ทำใน workflow process ทั้งหมดเป็นต้น โดยแนวโน้มนี้จะถูกหยิบยกและหา use case ซี่งจะเป็นวาระหลักในปีต่อๆไปอย่างแน่นอน

Trend #9: ความท้าท้ายของฝ่ายบริหารงานบุคคล เมื่อถึงการมาของ Digital Workforce

เรื่องหลักของหน่วยงาน HR ที่ต้องสื่อสารถึงการมาของโลกเทคโนโลยี การหายไปของตำแหน่งงาน และการพัฒนาบุคคลากรให้เหมาะสมกับการทำงานในรูปแบบผสมรวมระหว่างคนและโปรแกรมหุ่นยนต์ในระบบอัตโนมัติ

มีการคาดการณ์ว่าในอีกสักห้าปี แนวโน้มนี้จะหนักข้อขึ้นเรื่อยๆและเป็นประเด็นที่ HR ต้องทำให้ชัดเจน วางแผนให้รัดกุมถึงการจัดการเพราะไม่ใช้ทุกคนในองค์กรจะปรับตัวได้ง่ายๆ หากงานของเค้าเหล่านั้นจะถูกแทนที่จาก RPA แผนงานที่ CHROs (chief human resources officer) คือระบุให้ชัดว่างานไหน (อาจเป็นเฉพาะบางส่วน) ที่จะให้หุ่นยนต์มาทำแทน การค่อยเป็นค่อยไปในการปรับองค์กร การพัฒนาความรู้ในสองด้าน (up-skill, re-skill) หรือการวางจ้างทักษะแรงงานแบบใหม่เป็นต้น

Co-worker Robots (Digital Assistant)

Trend #10: การเติบโตไปพร้อมกันของ RPA ecosystems

การทะยานขึ้นอย่างรวดเร็วของตลาด automation tech จะไม่พุ่งไปแบบเดี่ยวๆแต่จะพากันไปทั้ง ecosystems โดยจากสถิติที่เก็บมาและการพยายกรณ์ของ IDC เอง แรงงานในตลาด automation ก็จะมีความต้องการมากขึ้นเช่นกันแรงงานด้านการพัฒนาตลาด การพัฒนาโปรแกรม โปรแกรมเมอร์ด้าน RPA และอื่นๆจะเป็นที่ต้องการเป็นอย่างมากในอนาคตอันใกล้นี้

Source:

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-top-trends-in-tech

https://www.uipath.com/blog/automation/top-automation-trends-2022

10 คำทำนายแนวโน้มระบบ RPA ในปี 2022 #2

ต่อจากบทความที่แล้ว ขอพูดถึง 4 แนวโน้มของโลก Robotic Process Automation เทรดถัดไปนะครับ 

Trend #4: ยุคเริ่มต้นของ task based workflows 

ปกติพวกเราจะคุ้นชินกับการทำงานบน desktop, web application นั้นๆ ให้จบในเรื่องๆหนึ่งแล้วต้องปิดจอสลับเอาข้อมูลไปทำต่อบนแอพอื่นๆ ซึ่งหลายครั้งต้องทำงานซ้ำ ต้องทวนข้อมูลก่อนกรอกเข้าอีกระบบ ซึ่งในปี 2022 จะเป็นตอนเริ่มต้นการทำงานในอีกแบบหนึ่งคือ task based workflows ซึ่งถูกออกมาช่วยผู้ใช้อย่างเราๆให้งานเสร็จเร็วขึ้น ตัว robots ที่ออกมามาจะอยู่ในรูปของdesktop assistant สั่งครั้งเดียวมองการทำงานเป็นกระบวนการไม่ติดว่าเป็นการเข้า-ออก กี่ application และอาจพิจารณาให้ถูกสร้าง task based workflows คือผู้ใช้เองด้วยเครื่องมืออย่างง่ายในการออกแบบโปรแกรม (no-code) ทำงานเป็นชิ้น ๆเล็ก ๆ (แต่ถูกออกแบบมาให้เป็นแบบจิ๊กซอว์) ไปรวมๆกันทำให้กระบวนการเสร็จเป็นชิ้นๆ ได้แบบ just-in-time เพื่อเซฟเวลาให้คนไปทำงานที่สร้างสรรค์กว่า

Trend #5: ทีม Automation CoEs จะเป็นผู้เชื่อมการใช้ AI เข้ากับ RPA เพื่อยกระดับการใช้งานขึ้นไปอีกขั้น

ปัจจุบันชัดเจนแล้วว่าเมื่อ CoEs ทีมได้นำเอา AI มาควบรวมพลังของ robots นั้นจะเป็นการเพิ่มศักยภาพขึ้นอย่างมากมาย ปลายทางของ AI ในที่นี้คือการเอา model มาทำผ่านระบบ automation แล้วตั้งค่าการทำงานแบบอัตโนมัติ ให้ robotsเข้าถึงข้อมูล และเมื่อต้องการให้มนุษย์ทำการตรวจสอบเพื่อพัฒนาปรับปรุง model ก็สามารถทำได้ไม่ยาก องค์กรใหญ่หรือองค์กรที่มีแนวคิดแบบนี้จะพัฒนาทั้ง RPA + AI ไปได้อย่างเห็นผล รวดเร็ว

Trend #6: ปฎิวัติ RPA ด้วยพลังของ ML model

การประยุกต์งานร่วมกันระหว่าง RPA + AI จะทำให้นักพัฒนาต้องปรับมุมองแค่การเอา robots มาทำงานสั้น ๆ ง่าย ๆโดยจะไม่เหมือนเดิมอีกต่อไปเนื่องด้วยการพัฒนา ML ทำให้โปรแกรมฉลาดขึ้น นักพัฒนาอาจไม่ต้องสอน robot แบบ step-by-step อีกต่อไป ดังตัวอย่างของ Forms AI ในคลิปด้านล่าง มนุษย์แค่สั่ง robot นำเข้าเอกสารชนิดเดียวกันสักเล็กน้อย จากนั้น ML จะคำนวณความเป็นไปได้ และดึงข้อมูลจากเอกสารมาให้มนุษย์ยืนยันว่าที่ ML ดึงมาให้นั้นถูกต้องแค่ไหน จากนั้น ML จะพัฒนาไปเรื่อย ๆ ผ่านเอกสารปริมาณมากที่ไหลเข้า ด้วยการทำงานแบบนี้การทำ OCR ไม่จำเป็นต้องสร้าง template อีกต่อไป เพราะ ML จะมองและแนะนำให้เองว่าเอกสารเป็นประเภทไหน (แต่มนุษย์ยังต้องยืนยันเพื่อพัฒนาความฉลาด) และสุดท้ายนอกจาก robot จะมองเห็น และกระทำให้แล้ว ยัง “เข้าใจ” รูปแบบต่างๆของข้อมูลมากขึ้นอีกด้วย (ในอนาคต)

Trend #7: ระบบที่ยืนหยุ่นมากขึ้นของ SaaS RPA

หลากหลาย RPA vendor จะขานรับแนวทาง Cloud Native การใช้ containerization, microsevices ต่างๆ จะถูกนำมาimplement เพื่อเป็นทางเลือกที่หลากหลายว่าต้องการติดตั้งระบบ automation ในรูปแบบไหน การปรับเปลี่ยนแบบทยอยนำขึ้นจาก on-premise ไปสู่ native cloud ทำได้อย่างเป็นขั้นตอนมีเครื่องมือรองรับเป็นต้น ทั้งนี้ทำขึ้นเพื่อนักพัฒนาเน้นไปที่พัฒนา robot เพิ่มประสิทธิภาพ ไม่ต้องไปกังวลในเรื่องอืน ๆ (install, manage, upgrade เป็นต้น)

Source:

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-top-trends-in-tech

https://www.uipath.com/blog/automation/top-automation-trends-2022

10 คำทำนายแนวโน้มระบบ RPA ในปี 2022 #1

ในปัจจุบันภาคธุรกิจเร่งนำเอาระบบ automation มาใช้ในอย่างมากในแทบทุกอุตสาหกรรม มีทั้งหมดแบ่งเป็น 10 แนวโน้มที่จะมีผลต่อการทำงานในคุณในอนาคตอันใกล้นี้ โดยในบทความนี้จะเล่าถึง 3 แนวโน้มแรกในบทความนะครับ

Trend #1: ซีไอโอจะเป็นคนกุมบังเหียนหลักของระบบอัตโนมัติ 

จากงานวิจัยของ Mckinsey บ่งบอกถึงมากกว่า 80% ที่องค์กรเพิ่มการใช้งานระบบ automation ไปมากกว่าความเป็น basic implement แต่เป็นการยกระดับไปถึงมาตรฐานของการใช้ระบบ RPA การเชื่อมโยงไปกับกลยุทธขององค์กร ต่อยอดไปถึงการใช้ RPA ในแง่ของการ คำถามที่ CIO โดนถามจะถูกปรับเปลี่ยนจากมันคืออะไร ทำงานทดแทนแรงงานมนุษย์ได้มากน้อยแค่ไหน ไปเป็นคำถามอาทิเช่น

  • การเชื่อมโยงกลยุทธหลักขององค์กรเข้ากับระบบ automation การมองหามาตรฐานการควบคุม ดูแลระบบให้มีมาตรฐานเพื่อความมั่นคงของระบบ กำกับดูแลกระบวนการทางธุรกิจโดยใช้ robots ให้มีประสิทธิภาพสูงสุด
  • ปรับการใช้งาน RPA ให้มาเป็นการทำงานด่านหน้าเพื่อสนับสนุนโมเดลการทำธุรกิจใหม่ๆ ไม่ใช่เป็นเพียง back office แบบเดิมอาทิเช่น chat bots, robot for call center หรือ customer self service เป็นต้น
  • สมดุลการใช้ automation ระหว่างการสร้าง หรือใช้งานจากตรงกลาง หรือการสร้าง robots ขึ้นใช้งานได้เองในแต่ละหน่วยงาน
  • สร้างการกำกับดูแลระบบให้เชื่อมกับบรรษัทภิบาลขององค์ในแง่มุมต่างๆ
Businessman holding a glass ball,foretelling the future.

Trend #2: การควบรวมเป็นหนึ่งเดียวของระบบ RPA ทั้ง BPA, iPaas, LCAP และ AI

แนวคิด “RPA-plus” ในที่นี้หมายถึงการควบรวมเอาความสามารถของ BPA (business process automation)+ LCAPs (low-code application platforms)+AI+ iPaaS (interation platforms as a service) เข้าไว้ด้วยกัน ทั้งนี้เนื่องด้วยผู้นำการควบรวมจากทาง RPA vendor มีการปรับใช้งาน การเข้าถึงได้อย่างรวดเร็วมากว่า platform ที่กล่าวข้างต้นอื่นๆ ทั้งหมด โดยในปี 2020 RPA เติบโตจากยอดรายได้ถึงเกือบ 1.9 ล้านล้านดอลล่าร์ และมีโอกาสเติบโตออกไปอีกในอนาคต และเกิดการเติมเต็มความสามารถเข้าไปในระบบ RPA เพื่อเติมในเรื่อง “democratization” และ “scalability” ให้เต็มความสามารถนั่นเอง

โดยมีข้อสังเกตุที่ชัดเจนในสองรูปแบบที่เกิดขึ้นในตลาด convergence RPA คือ

  • การเพิ่มความสามารถในการสร้าง robot ที่เข้ากันได้กับ เชื่อมต่อได้ง่ายกับระบบปัจจุบันขององค์กร การต้องให้ robot ทำงานกับกระบวนการที่ซับซ้อนมากขึ้นได้นั้น ระบบ RPA ที่ดีต้องมีการสร้าง UI (user interface) ที่เข้ากันได้กับ RPA ด้วยเทคโนโลยี low-code เป็นต้น หรืออีกตัวอย่างคือ RPA ที่มีเครื่องมือในการสร้าง robot ได้ด้วยผู้ใช้งานเอง สร้างapplication สั้นๆง่ายๆในการรองรับการทำงาน robot เป็นต้น
  • ผู้เล่นในตลาด RPA จะเริ่มสร้างเครือข่ายหรือลงทุนกับการ “เชื่อมต่อ” ให้ดีและง่ายขึ้นไปอีก (ผ่าน API) การทำ plug in ต่างๆ กับ application ที่มีผู้ใช้ในตลาดจำนวนมาก และการมองถึงการเป็น RPA ที่มีหน้าที่จัดการบริหาร robot และกำหนดควบคุมการใช้งาน (governance) ภายใต้ระเบียบข้อบังคับ การดูแลระบบรักษาความปลอดภัย การทำงานของ robot ให้ดียิ่งขึ้น นี่เป็นที่มาของคำว่า RPA-plus

Trend #3: การก่อกำเนิด layer ใหม่ของ RPA (automation layer)

เป็นการมองอนาคตถึงแนวคิดที่ว่าองค์กรยุคใหม่จะมีการนำเอาหลักคิด “robot for every person” เฉกเช่นการให้พนักงานทุกคนมีอีเมลเป็นของตนเองเพื่อเอาไว้สื่อสารเป็นต้น แต่แนวคิดนี้คือให้พนักงาน (ทุกคน) มี digital desktop assistant มาทำงานเชื่อมต่อกับกระบวนการขององค์กรที่ส่วนมากมีหลากหลาย enterprise systems, web application หรือระบบเก่าๆอย่าง legacy systems ที่ไม่ค่อยมี api ในการเชื่อมต่อมากนัก

การเชื่อมด้วย RPA ที่ทำได้อย่างรวดเร็วนี้จะก่อให้เกิดรูปแบบ “ชั้น” ใหม่ขึ้นเรียกว่า automation layer ที่จะเป็น stacks บนสุดของapplication stacks ซึ่งใน “ชั้น” หรือ layer ใหม่นี้จะอยู่ระหว่างผู้ใช้งาน และระบบ enterprise ต่างๆ โดยมีเครื่องมือสำหรับสร้าง robot มาช่วยนำเข้าข้อมูล เปิดปิดระบบ พิมพ์รายงาน มี plugin การเชื่อมต่อต่างๆ เก็บเอาไว้และระบบที่ทำหน้าที่ maintenance และ governance อีกด้วย

สุดท้ายด้วย layer ใหม่นี้จะทำการเกิดแนวคิดในการทำ digital process ได้ง่าย รวดเร็วและมีมาตราฐานเพื่ออำนวยให้ผู้ใช้งานสร้าง digital robot เพื่อ rethink กระบวนงานใหม่ๆที่สร้างสรรค์ และพ้นขีดจำกัดจาก technology fragmentation (การมีระบบที่แตกต่าง หลากหลายและเชื่อมต่อได้ยากเย็น) ได้ในที่สุด   

Source:

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-top-trends-in-tech

https://www.uipath.com/blog/automation/top-automation-trends-2022

ระบบอัตโนมัติกับ รูปแบบการทำงานใหม่ (Hybrid Work)

สถานการณ์โควิดเป็นทั้งแรงผลักและแรงดัน รวมไปถึงขับเคลื่อนอย่างรวดเร็วสู่การทำงานแบบรีโมท (ทำงานจากระยะไกล เช่นจากที่บ้าน) แต่ไม่ใช่ทุกคนจะหลงรักการทำงานในรูปแบบนี้เพราะหลายๆงานมันยากมากขึ้น ใช้เวลามากขึ้นกว่าจะเช็คกว่าจะเคลียร์ความเข้าใจกับเพื่อนร่วมงานและนำข้อมูลเข้าประมวลผล เป็นผลให้งานวิจัยมากมายอย่างของ Saleforce research บอกเลยว่า 64% อยากกลับเข้าทำงานในออฟฟิศ (ในรูปแบบเดิม) เป็นที่มาของแรงบีบให้ผู้บริหารต้องปิดตา เปิดหู รับฟังมากขึ้นและต้องจัดเตรียมทรัพยากรในการรองรับการทำงานในรูปแบบใหม่ “Hybrid working” ให้ดีที่สุดดังตัวอย่างจากประเทศสหรัฐอเมริกาเรื่องการลงทุนด้านไอทีดังนี้

  • เครื่องมือสำหรับพนักงานในการประชุม online (72%)
  • ระบบรักษาความปลอดภัยในการเชื่อมต่อต่างๆ (70%)
  • การฝึกอบรมสู่พนักงานในการประชุม ทำงานรูปแบบ online (64%)
  • ปรับห้องประชุมเพื่อรองรับการทำ virtual connectivity มากขึ้น (อุปกรณ่ต่างๆในห้องประชุม การถ่ายทอดสด และอื่นๆ)(54%)

อนาคตอันใกล้คำว่า “Hybrid work” จะเป็นสิ่งที่ทุกคนคุ้นเคยอย่างแน่นอนเนื่องด้วยปัจจัยที่กล่าวไปข้างต้น โจทย์จึงมาอยู่ที่ผู้บริหารต้องวางแผนการทำงานในรูปแบบนี้ให้มีประสิทธิภาพมากที่สุด ทั้งนี้ไม่ใช่คิดแค่ desktop PC สำหรับโต้ะพนักงาน และ notebook สำหรับแจกเพื่อให้ทำงานจากที่บ้านแค่นั้น แต่ต้องรวมไปถึงการคิดนอกกรอบอื่นๆเพิ่มขึ้นไปด้วยเช่นการวางแผนงบประมาณ การสนับสนุนการทำงานในรูปแบบใหม่ซึ่งต้องพิจารณารูปแบบว่า technology ที่องค์กรใช้อยู่ในปัจจุบันรองรับทั้งหมดหรือไม่ซึ่งพระเอก ณ ตอนนี้น่าจะเป็นระบบ cloud infra รวมไปถึงบริการ managed service ทั้งหลายที่จะมาช่วยองค์กร (การลงทุนใน hardware, software จะหดหายไปบ้าง) ระบบรักษาความปลอดภัยเองก็จำเป็นต้องถูกอัพเกรดให้แข็งแกร่งมากขึ้นไปตามสถานการณ์

employee work outside from the office

และแน่นอนพระเอกคนสำคัญที่จะมาช่วยให้การทำงานในแบบ Hybrid Work รวดเร็วขึ้น ผิดพลาดน้อยลง ไม่เปลี่ยนแปลงแนวปฎิบัติมากมายนักคงเป็นระบบ automation อย่างที่สถาบันวิจัย Forrest research กล่าวไว้ว่า “เมื่อสถานการณ์โรคระบาดคลี่คลายลงไป องค์กรจะถูกปรับโครงสร้างอย่างรุนแรงด้วยความจริงที่ว่าพนักงานสามารถทำงานได้จากนอกออฟฟิศ ระบบอัตโนมัติจะเข้ามาปรับทรัพยากรที่ไร้คุณค่า จัดกระบวนการทำงานใหม่ให้องค์กรพร้อมสำหรับโลกธุรกิจใหม่”

ความจริงนี้ถูกส่งผ่านการลงทุน การ implement ระบบ RPA ในองค์กรใหญ่ๆมากมายโดยมีมากกว่า 56% ที่ใช้ระบบนี้อยู่ (และจะพัฒนาต่อไป) อีก 17% วางแผนจะใช้งานในปีหน้า และ 8% วางแผนจะใช้ในอีกสองปี นั่นหมายถึงการ shift to hybrid work model เกือบจะทั้งหมด … ลองคิดดูหากท่านยังไม่ได้พิจารณาในเรื่องราวเหล่านี้ในองค์กรของท่านจะถูกทิ้งห่างไปไกลขนาดไหน

ดังนั้นมาเรียนรู้เพื่อให้เข้าใจเทคโนโลยี ที่จะเป็นตัวยกระดับการทำงานขององค์กรของคุณกันเถอะ…

robotic process automation concept

credit:

https://www.uipath.com/blog/digital-transformation/hybrid-work-model-needs-new-tech-stack