ข้อได้เปรียบอย่างหนึ่งของระบบ Robotic Process Automation หรือ RPA เมื่อเปรียบเทียบกับเทคโนโลยีประเภทอื่นสำหรับการเพิ่มประสิทธิภาพของกระบวนการทำงานในองค์กรก็คือ RPA สามารถเริ่มได้ด้วยต้นทุนที่ต่ำกว่า องค์กรสามารถนำเครื่องมือ RPA มาใช้ร่วมกับระบบหรือแอพพลิเคชั่นที่มีอยู่ได้โดยไม่ต้องรื้อของเดิมทิ้งอย่างขนานใหญ่ และก็เป็นการนำมาใช้แบบค่อยเป็นค่อยไปตามปริมาณงานที่ตั้งใจจะพัฒนาให้เป็นระบบอัตโนมัติ
แต่อีกปัจจัยหนึ่งที่ส่งผลต่อความคุ้มค่าของการลงทุนใน RPA ด้วยเหมือนกันก็คือ เวลาที่โรบอทใช้ทำงานให้เราหรืออีกนัยหนึ่งคือกระบวนการทำงานของเรามีโรบอทเข้ามาช่วยแบ่งเบาภาระการทำงานของพนักงานเราได้แค่ไหน
ความคุ้มค่าของการลงทุนจะเกิดขั้นช้าถ้า
- ระบบงาน RPA ต้องหยุดชะงักเนื่องจากเกิดความผิดพลาดในขั้นตอนการทำงานทำให้ต้องรอพนักงานที่เป็นคนเข้ามาสั่งงานหรือตัดสินใจบางอย่างให้โรบอทเพื่อที่โรบอทจะสามารถทำงานต่อ หรือ
- ระบบงาน RPA ที่มีการแตกออกเป็นระบบย่อยๆหลายระบบไม่สามารถรับมือกับการแก้ไขข้อมูลผิดพลาดได้อย่างยืดหยุ่นพอ ทำให้เจ้าหน้าที่ที่เป็นคนต้องใช้เวลามากในการค้นหาจุดที่เป็นปัญหาหรืออาจต้องย้อนกลับไปทำใหม่ในขั้นตอนเริ่มต้น
กรณีตัวอย่างทั้งสองนี้จะยิ่งเด่นชัดถ้าเรามีกระบวนการทำงานซึ่งมีลักษณะยาว คลอบคลุมงานของหลายแผนกหรือมีปริมาณธุรกรรมที่ต้องจัดการเป็นจำนวนมาก การหยุดชะงักเหล่านี้ถ้าเกิดขึ้นบ่อยและใช้เวลานานกว่าโรบอทจะได้รับคำสั่งจากผู้ใช้งานที่เป็นคนเพื่อทำงานต่อ ย่อมส่งผลต่อเวลาทำงานของโรบอทและความคาดหวังขององค์กรที่อยากให้ระบบ RPA เช้ามาแก้ปัญหาประสิทธิภาพและปัญหาสภาวะการทำงานที่เผชิญอยู่
เพื่อให้เห็นภาพ สมมุติบริษัทค้าปลีกน้ำมันแห่งหนึ่งต้องใช้เจ้าหน้าที่ฝ่ายบัญชี 10 คนทำรายการกระทบยอดบัญชีของยอดชำระผ่านธนาคารกับยอดหนี้ของลูกค้า (Bank Statement Reconciliation)ได้เฉลี่ย 500 รายการใน 1 วัน บริษัทตัดสินใจนำระบบ RPA เข้ามาช่วยในกระบวนการนี้ด้วยความคาดหวังให้โรบอททำงานนี้ได้ 3,000 รายการใน 1 วันซึ่งเป็นปริมาณธุรกรรมสูงสุดที่บริษัทเคยบันทึกไว้ อย่างไรก็ตาม ในหลายกรณีด้วยกันที่ยอดชำระกับยอดหนี้แตกต่างกันมากจนโรบอทต้องข้ามรายการเหล่านั้น และบันทึกรายการที่ไม่ได้ทำในรายงานสรุป เจ้าหน้าที่ผู้รับผิดชอบต้องใช้เวลานานในการค้นหาและแก้ไขข้อมูล หรือยอมรับข้อผิดพลาดที่เกิดขึ้น ผลลัพธ์ที่ได้คือปริมาณรายการที่โรบอททำได้ ต่ำกว่าความคาดหวังที่ 3,000 รายการต่อวันไปค่อนข้างมาก
สถานการณ์ดังกล่าวนี้ ในบางครั้งสามารถแก้ไขได้ด้วยการออกแบบระบบการทำงานเพื่ออำนวยความสะดวกในการให้เจ้าหน้าที่รับทราบและเข้ามาแก้ไขได้ในเวลาอันสั้น แต่ในระยะยาวแล้ว สมควรที่จะมีฟังชั่นเฉพาะที่เจ้าหน้าที่สามารถทำงานร่วมกับโรบอทได้อย่างราบรื่น ครอบคลุมทุกเงื่อนไขที่โรบอทไม่ต้องหยุดชะงักรอระหว่างการทำรายการหรือมีการแจ้งเตือนเจ้าหน้าที่ได้ทันทีเพื่อแก้ไขข้อมูลในจุดที่เป็นปัญหา
ก่อนหน้านี้ทาง Automat เราออกบทความหนึ่งชื่อ เมื่อคนและหุ่นยนต์ประสาน ทำงานร่วมกัน (Human-Bot Collaboration) ซึ่งกล่าวถึงรูปแบบลักษณะต่างๆของการทำงานร่วมกันระหว่างคนกับโรบอท แต่ในบทความนี้เรามาเจาะดูเฉพาะสถานการณ์ที่โรบอทต้องหยุดเพื่อรับคำสั่งหรือรับ action บางอย่างจากผู้ใช้งาน ซึ่งโดยทั่วไปจะมีอยู่ 3 แบบคือ
- การอนุมัติ (Approval Scenario) เป็นสถานการณ์ที่โรบอทถูกโปรแกรมให้หยุดการทำงานเพื่อรอคำสั่งอนุมัติจากผู้ใช้งาน โดยอาจเป็นการอนุมัติลดราคาขายสินค้าของทีมขาย การรับของเข้าคลังสินค้า การยอมรับความต่างของค่าที่ใช้เปรียบเทียบ เป็นต้น ระบบงานลักษณะนี้มักมีการกำหนดค่าการยอมรับ (Threshold) เพื่อที่โรบอทสามารถทำงานด้วยตัวเองได้จนกว่าค่าที่เป็นเงื่อนไขจะมากกว่าหรือน้อยกว่าค่าการยอมรับที่ตั้งไว้ คนจะต้องเข้ามาอนุมัติงานดังกล่าว
- การตรวจสอบ (Verification Scenario) เป็นสถานการณ์ที่การทำงานของโรบอทต้องหยุดรอการตรวจสอบของผู้ใช้งานว่ากระบวนการทำงานดัวกล่าวเป็นไปตามที่กำหนดไว้หรือไม่ เช่นการพิจารณากระบวนการขอสินเชื่อของลูกค้าที่ต้องมีการตรวจสอบความครบถ้วนของเอกสาร การเปิดใช้งานบัญชีซื้อขายหลักทรัพย์ (Account Activation) ที่ลูกค้าต้องผ่านขั้นตอน KYC ก่อน เป็นต้น
- การยืนยันความถูกต้อง (Validation Scenario) เช่นกรณีการใช้โรบอท extract ข้อมูลจากเอกสารผ่านเครื่องมือ OCR แล้วต้องมีคนเข้ามาช่วยยืนยันความถูกต้องของข้อมูลที่ได้ในกรณีที่โรบอทไม่มั่นใจว่าตัวเองอ่านถูกหรือไม่
นอกจากสถานการณ์ทั้งสามลักษณะนี้แล้ว การแก้ไขธุรกรรมที่เกิดไปแล้วก็เป็นเหตุการณ์ที่สามารถเกิดขึ้นได้ และถ้ามีการแก้ไขอย่างทันท่วงที ไม่เสียเวลารอการตัดสินจากผู้ที่เกี่ยวข้อง ย่อมส่งผลโดยตรงต่อประสิทธิภาพของกระบวนการทำงานนั้นๆ
ผู้ผลิตซอฟท์แวร์ RPA อย่าง UiPath Inc. ก็มีการพัฒนาฟังชั่นการทำงานของแพลตฟอร์มตนเองขึ้นมาโดยเฉพาะสำหรับเรื่องนี้ เรียกว่า UiPath Action Center โดยกำหนดให้คนส่ง action ที่โรบอทต้องการเพื่อให้โรบอททำงานต่อ เช่น การอนุมัติหรือปฎิเสธ การยืนยันเงื่อนไขที่โรบอทเจอว่าถูกหรือผิด เป็นต้น นอกจากนี้ยังมีการ assign ผู้รับผิดชอบลำดับถัดไปเพิ่อไม่ให้เกิดปัญหาขาดคนอนุมัติหรือตัดสินใจ
ตัวอย่างในภาพเป็นการทำงานของโรบอทที่หยุดรอผลการอนุมัติเสนอราคาจากผู้ใช้งานตามเงื่อนไขที่เราได้ออกแบบไว้ Action Center จะรวบรวมงานต่างๆที่หยุดรอผลการอนุมัติหรือการตรวจสอบไว้ในสถานะ Pending เพื่อที่ผู้รับผิดชอบสามารถเข้ามาอนุมัติหรือแก้ไขงานให้ถูกต้อง จากนั้นโรบอทก็จะทำงานของตัวเองต่อไปได้
ด้วยฟังชั่นการทำงานของ Action Center เราสามารถนำกระบวนการทำงานอีกมากมายที่ครั้งหนึ่งอาจพิจารณาแล้วไม่เหมาะสมสำหรับการทำออโตเมชั่น เนื่องจากมีความจำเป็นต้องหยุดรอคำสั่งจากเจ้าหน้าที่ที่เป็นคน กลับมาพิจารณาใหม่ในการพัฒนาเป็นระบบ RPA
นอกจากนี้ ท่านที่ได้พัฒนางาน RPA สำหรับองค์กรของท่านไปบ้างแล้วในระยะเวลา 2-3 ปีมานี้ สามารถกลับไปพิจารณากระบวนการทำงานเหล่านั้นอีกทีว่ามีขั้นตอนไหนที่ยังคงมีลักษณะที่เป็นรอยต่อของขั้นตอนการทำงานหรือการสื่อสารกันระหว่างผู้ใช้งานที่ทำให้เกิดการรอ action จากผู้ตัดสินใจ แล้วดูว่าการทบทวนการออกแบบของกระบวนการทำงานนี้อีกครั้งหรือการนำเครื่องมืออย่าง Action Center เข้ามาใช้จะสามารถลดเวลาที่เสียไปเหล่านี้ได้หรือไม่และได้แค่ไหน
เพราะการลดเวลาที่โรบอทไม่ได้ทำงานย่อมหมายถึงประโยชน์ที่เราจะได้รับจากการลงทุนใน RPA ที่เต็มเม็ดเต็มหน่วยมากยิ่งขึ้นนั่นเอง!
ท้ายบทความมีคลิปประกอบเพื่อความเข้าใจเพิ่มขึ้นของ UiPath Action Center ครับ
Clip: