UiPath AI Summit 2024 

Turn AI hype into business results: Top takeaways from UiPath AI Summit 2024 – automat notes

สรุปใจความสำคัญ part 1รู้จัก เข้าใจ และใช้งานเพื่อเปลี่ยนจากความสนใจเป็นการยกระดับธุรกิจ

Turn AI hype into business results: Top takeaways from UiPath AI Summit 2024

ในทุกๆ ปีทาง UiPath RPA platform อันดับต้นๆในตลาดจะมีการจัดงาน ai summit โดยปีนี้มีการแบ่งเนื้อหาน่าสนใจออกเป็นทั้งหมด 4 ส่วนด้วยกันคือ

1.เนื้อหาในส่วนของการกล่าวเปิด การแชร์ความเห็นจากผู้เชี่ยวชาญจาก Forrester และการเล่า overview การเปิดตัวสิ่งใหม่ๆจาก UiPath

2.การประยุกต์ใช้จริง และประสบการณ์จริง อุปสรรคและการต่อยอดในอนาคต แยกตาม automation & ai ตามประเภทอุตสาหกรรม ธนาคาร ประกันภัย การผลิต สุขภาพ เป็นต้น

3.รายละเอียด แยกตาม module ใหม่ๆของ UiPath ในยุคต่อไป ที่เป็นการดึงเอาศักยภาพของ ปัญญาประดิษฐ์เข้ามามีส่วนและแบ่งแยก AI ออกเป็นสองส่วนคือ Specialized AI และ GenAI

4.แผนการออกบริการและผลิตภัณฑ์ใหม่ๆ การสนับสนุน (Platform Road Map) และการมองอนาคตของการเอา automation & ai มาใช้อย่างเห็นผล

ในเนื้อหาตอนแรกนี้ แอดมินของเล่าจากการฟังอย่างรวดเร็ว (เขียน blog นี้โดยฟังและจับเอาจากการนั่งฟัง live และจดสรุปใจความสำคัญออกมาได้ดังนี้ (key note session)

all session
  • ในช่วงแรก ผบห UiPath คุยสัมภาษณ์ mr.Curran (Senior Analyst at Forrester) ถึงการนำเอา GenAI ต้องคำนึงถึงสามเรื่องคือ การเตรียมบริบท การเปิดและการให้เข้าถึงโมเดล และการนำไปใช้ ถ้าทำสามอย่างได้อย่างง่ายๆ จะทำให้การใช้งานจริงในธุรกิจ ประสบผลดี
  • ทั้งนี้ platform การใช้งานต้องอยู่ภายใต้ความมั่นคง ปลอดภัย และน่าเชื่อถือ
  • การทำให้บริบท พร้อมถึงขีดสูงสุดเพื่อให้ GenAI มี prompt ที่สมบูรณ์จริงๆ ก่อนนำไปสร้างผลลัพธ์ที่ถูกต้อง ไม่มีการตามมาหลอกหลอนของ AI ด้วยการทำการต่อสายดิน (อันนี้แปลตรงตัว แต่ก็ทำให้เข้าใจดี) ว่ามีการประยุกต์
  • ประสานแนวคิด RAG (Retrieval Augmented Generation) หรือที่เราเรียกย่อๆ ว่า RAG คือเทคนิคในการสร้างระบบการสนทนาปัญญาประดิษฐ์ (Conversational AI) ที่ใช้การผสมผสานระหว่างการถอดความ (Retrieval) จากฐานความรู้ขนาดใหญ่ และการสร้างข้อความ (Generation) โดยใช้โมเดลการสร้างภาษา (Language Model)โดยจะมีกระบวนการทำงานของ RAG มีดังนี้:
    • ระบบจะวิเคราะห์คำถามหรือข้อความของผู้ใช้
    • ระบบจะค้นหาข้อมูลที่เกี่ยวข้องจากฐานความรู้ขนาดใหญ่ โดยอาจเอามาจาก Enterprise Data warehouse หรือ Data mart ในเรื่องต่างๆ ที่องค์กรทำขึ้น
    • โมเดลการสร้างภาษาจะนำข้อมูลที่ค้นพบมาสังเคราะห์และสร้างคำตอบด้วย GenAI
    • จุดเด่นของ RAG คือช่วยให้ระบบ AI มีความรู้ที่ครอบคลุมและทันสมัยมากขึ้น เนื่องจากดึงข้อมูลจากแหล่งความรู้ภายนอก และประสานกันกับภายใน แต่คำตอบก็ยังคงความเป็นธรรมชาติจากการสร้างข้อความของโมเดลภาษา ทำให้การสนทนามีประสิทธิภาพมากขึ้นถูกต้องและหลอนน้อยลงไปมาก
  • เปิดตัว UiPath LLM อย่าง DocPath และ ComPath โดยตัว UiPath DocPath จะช่วยให้องค์กรประมวลผลเอกสารใด ๆ ทางธุรกิจที่ซับซ้อน และไม่มีโครงสร้างได้ดี ส่วนตัว UiPath CommPath มีความสามารถประมวลผลการสื่อสารที่หลากหลาย ตั้งแต่ข้อความ อีเมล chat ด้านธุรกรรมไปจนถึงคําขอที่ซับซ้อนซึ่ งมีคําขอหลายรายการและภาษาเฉพาะบริบทในแต่ละธุรกิจ แต่ละองค์กร ทั้งนี้จุดขายคือความแม่นยำ การเทรนโมเดลที่เร็ว และน่าเชื่อถือ
  • เปิดตัว UiPath AutoPilot ที่มีความเก่งในแต่ละด้านอาทิ สร้าง process flow program ได้ด้วย prompt หรือแม้กระทั่งสร้าง UiPath App (low-code) ด้วยการส่ง PDF ภาพตัวอย่างที่เราออกแบบมาคร่าวๆได้เลย ยังมีรายละเอียดที่จะเขียนต่อไปในบทความตอน div deep ต่อไปครับ

Process Discovery คืออะไร, สำคัญอย่างไรสำหรับโครงการ RPA

สำหรับผู้ที่มีหน้าที่ขับเคลื่อนโครงการ RPA หรือมีบทบาทในโครงการ RPA นั้น ขั้นตอนของ Process Discovery จัดว่าเป็นขั้นตอนหนึ่งที่สำคัญมากของโครงการ เนื่องจากเรื่องนี้เกี่ยวข้องโดยตรงกับความสำเร็จในการนำเทคโนโลยี RPA ไปใช้กับงานในองค์กรของเรา

เราลองนึกภาพดูถ้าองค์กรของเราเลือก process การทำงานที่ (ไม่ทราบมาก่อนว่า) ซับซ้อน เกิดปัญหามากมายในขั้นตอนการพัฒนาอันทำให้โครงการล่าช้ากว่ากำหนดมากและได้ผลลัพท์ที่สุดท้ายแล้ว ไม่ได้ช่วยให้ผู้ใช้งานมีชีวิตการทำงานที่ง่ายขึ้น โครงการนี้ก็จะหมดความน่าสนใจจากทุกๆฝ่ายไปในที่สุด

Process Discovery เป็นขั้นตอนที่สมาชิกโครงการ RPA (ผู้ที่มีบทบาทหลักคือ หัวหน้าโครงการ ผู้ใช้งาน นักวิเคระห์และออกแบบระบบ เป็นต้น) คัดเลือกและวิเคราะห์กระบวนการทำงานที่มีอยู่ภายในองค์กรเพื่อพิจารณาว่ากระบวนการใดเหล่านี้เหมาะสำหรับพัฒนา เป็นระบบทำงานอัตโนมัติด้วย RPA โดยเป็นการค้นหากระบวนการที่มีลักษณะต่อไปนี้ เช่น เป็นการทำงานซ้ำในรูปแบบเดิม ใช้เวลามากจนกระทบงานอื่น มีเงื่อนไขการทำงานที่แน่นอน เกี่ยวข้องกับงานที่ต้องอาศัยข้อมูลจากระบบต่าง ๆ ในองค์กรมาประกอบการใช้งานเป็นจำนวนมาก

เป็นต้นโดยเรียกคุณลักษณะเหล่านี้ว่าเกณฑ์การพิจารณา ส่วนผลลัพธ์ของการทำงานส่วนนี้จะเป็น Process List ที่ผู้ใช้งานหรือสมาชิกโครงการระดมความคิดออกมาว่า กระบวนการทำงานไหนบ้างที่สมควรถูกเลือกขึ้นมาศึกษาในเชิงลึกว่ามีความเหมาะสม คุ้มค่ากับการพัฒนาให้เป็นระบบทำงานอัตโนมัติบ้าง

ในการทำ workshop ของขั้นตอน Process Discovery เราอาจใช้วิธีแบ่งกลุ่มผู้ใช้งานออกเป็นกลุ่มต่างๆ ที่ค่อนข้างมีความเข้าใจการทำงานในปัจจุบันของแต่ละคน และเลือก process ที่เห็นร่วมกันออกมาชุดหนึ่งเพื่อหารือกันในที่ประชุมรวม

ผู้ใช้งานจะต้องพยายามคิดว่างานของตนยังมีสิ่งใดที่เป็นปัญหาหรือสามารถทำให้ได้ดีกว่าที่เป็นอยู่ หากไม่แน่ใจก็สามารถซักถามเพื่อนร่วมกลุ่มหรือวิทยากรที่มีหน้าที่ให้คำปรึกษา เพื่อที่ว่าสุดท้ายกลุ่มของตนจะสามารถได้ Process List ที่มั่นใจได้ว่าสามารถช่วยปรับปรุงการทำงานของเราให้ดีขึ้นได้

การทำ workshop นี้ ยังเป็นโอกาสอันดีที่

  1. พนักงานบุคคลากรในกลุ่มสามารถแลกเปลี่ยนข้อมูลและความเข้าใจในการทำงานของแต่ละคนซึ่งอาจอยู่คนละแผนก ซึ่งการเข้าร่วม workshop ลักษณะนี้ไม่ใช่เป็นแค่การประชุมเฉพาะกิจเวลาที่เกิดปัญหาและต้องการการแก้ไขเฉพาะหน้า แต่เป็นเรื่องของการมองภาพใหญ่ของโอกาสในการปรับปรุงกระบวนการทำงานให้มีประสิทธิภาพมากขึ้น
  2. ได้รับฟังความคิดเห็นและมุมมองในการทำงานที่กว้างขึ้นจากพนักงานที่ปกติอาจจะไม่ได้มีโอกาสแสดงความคิดเห็นออกมา เนื่องจากในแต่ละวันเราก็จะให้ความสนใจเฉพาะกับงานที่เราต้องรับผิดชอบ ทำให้ขาดโอกาสในการเห็นภาพรวม
  3. ได้รับความรู้และข้อมูลจากฝั่งของเทคโนโลยีจากผู้เชี่ยวชาญที่นำมาถ่ายทอดแลกเปลี่ยนระหว่างการทำworkshop ซึ่งทำให้องค์กรสามารถรับทราบความเป็นไปของเทคโนโลยีที่ตนเองสามารถนำมาใช้ประโยชน์ แม้บางแนวคิดที่ได้จาก workshop อาจยังไม่เหมาะสมที่จะหยิบมาพัฒนาได้เลยทันที แต่ก็ยังสามารถุศึกษาเพิ่มเติมหากเป็นประโยชน์ในอนาคตได้  

ทั้งนี้ Process List ที่สมาชิกโครงการได้รวบรวมออกมาจะถูกนำมาจัดกลุ่มเป็น 4 กลุ่มหรือ 4 Quadrants ตามการประเมินจากมุมมองแรกคือ มองประโยชน์ที่ผู้ใช้งานหรือองค์กรคาดหมายจะได้รับ และอีกมุมคือมุมมองของต้นทุนและความซับซ้อนของการพัฒนางานเหล่านี้ให้เป็นระบบ RPA

โดยที่กลุ่มของกระบวนการทำงานใน Process List ทั้ง 4 กลุ่มสามารถอธิบายได้ดังนี้

  1. Quick-Win: กลุ่มกระบวนการทำงานที่จะก่อให้เกิดประโยชน์แก่องค์กรได้มาก ในขณะที่ต้นทุนหรือความซับซ้อนในการพัฒนากระบวนการทำงานให้เป็น RPA มีไม่มากนัก เหมาะสมกับการเลือกมาทำเป็นระบบ RPA เป็นกลุ่มแรก ซึ่งเราต้องการได้ผลลัพท์ที่รวดเร็วเพื่อรักษาโมเมนตัมของโครงการ
  2. Low-Hanging Fruits: กลุ่มกระบวนการทำงานที่จะก่อให้เกิดประโยชน์แก่องค์กรได้พอประมาณ แม้ไม่มากเท่ากับกลุ่ม Quick-Win ในขณะที่ต้นทุนการทำงานก็ไม่ได้สูงมากหรือทำได้ไม่ยากเท่าไหร่ หากพิจารณาว่าสามารถได้รับประโยชน์ที่เพียงพอ ก็สามารถเลือกทำเป็นกลุ่มถัดไป
  3. Must-Do Improvements: กลุ่มกระบวนการทำงานที่คาดหวังให้เกิดประโยชน์แก่องค์กรได้มาก แม้มีต้นทุนค่าใช้จ่ายที่สูงหรือมีความซับซ้อนในประเด็นต่างๆของการพัฒนาระบบอยู่พอสมควร ก็ยังคุ้มที่จะลงทุนทำ
  4. Long-Term Improvements: กลุ่มกระบวนการทำงานที่มีประโยชน์หรือคุณค่าต่อองค์กรไม่มาก โดยเฉพาะเมื่อเทียบกับต้นทุนความซับซ้อนที่ต้องใช้พัฒนาโครงการ อาจมองกลุ่มงานนี้เป็นกลุ่มสุดท้าย อาจพิจารณายังไม่ต้องทำในตอนนี้ หรือรอพิจารณาเชิงคุณประโยชน์ที่มีโอกาสเพิ่มขึ้นได้ในอนาคต 

เราสามารถใช้เกณฑ์การให้คะแนน (Automation Score) ที่คำนึงจากปัจจัยทั้งด้านประโยชน์ที่คาดว่าจะได้รับและด้านต้นทุนการพัฒนา มาช่วยเราในการจัดกลุ่มได้ 

อย่างไรก็ตามแม้การทำ workshop ในขั้นตอน Process Discovery นี้จะดูมีขั้นมีตอน มีเกณฑ์การคัดเลือก Process List ที่ค่อนข้างชัดเจนและสามารถคำนวนเป็นตัววัดเชิงปริมาณอย่างคะแนนที่จะช่วยให้เราจัดกลุ่ม process เหล่านี้ได้ เรายังมีข้อสังเกตบางประการจากการสังเกตกิจกรรมที่เกิดขึ้นใน workshop ซึ่งอาจทำให้เราไม่ได้ Process List ที่ดีที่สุดสำหรับการวางแผนโครงการ RPA ในระยะถัดไป คือ

  1. การขาดบุคคลากรที่มีความเข้าใจจริงในกระบวนการทำงานที่กำลังประเมินอยู่ ในกรณีที่ผู้ใช้งานที่ลงมือทำเองหรือมีความเข้าใจในขั้นตอนและปัญหาการทำงานจริงๆไม่ได้อยู่ร่วมใน workshop ซึ่งทำให้ Process List ที่ทำออกมาไม่ได้แสดงถึงกลุ่มงานที่เหมาะสมที่สุดที่จะพัฒนาให้เป็นระบบ RPA
  2. การขาดข้อมูลที่จำเป็นสำหรับการตัดสินกระบวนการทำงานที่กำลังประเมินอยู่ เวลาเราพูดถึงประโยชน์ที่คาดหวังจากการเพิ่มประสิทธิภาพการทำงานหรือความซับซ้อนของการทำงานที่เรากำลังเผชิญอยู่ เราควรมีวิธีที่จะเก็บค่าสถิติของการทำงานนี้ให้ได้อย่างครบถ้วนและใกล้เคียงความจริงให้ได้มากที่สุด เช่น ขั้นตอนและเงื่อนไขการทำงานที่เราทำอยู่ เวลาที่ใช้อยู่ เวลาที่คาดการณ์ว่าจะลดลงเมื่อมีระบบ RPA มาใช้เป็นต้น ถ้าสมมุติฐานหรือค่าสถิติเหล่านี้คลาดเคลื่อนจากความจริงไปมาก เราจะได้ Process List ที่ไม่เหมาะสมและจะส่งผลต่อความสำเร็จและการยอมรับของโครงการ RPA
  3. การที่ผู้ใช้งานหรือบุคคลากรที่มีหน้าที่ประเมินความเหมาะสมของโครงการ ยังไม่ได้รับทราบข้อมูลด้านเทคโนโลยีที่จะนำมาใช้ออกแบบและทำงานจริงอย่างเพียงพอ ทำให้เป็นอุปสรรคต่อการประเมินความซับซ้อนของการพัฒนาและการเลือกรูปแบบการทำงานใหม่ที่เหมาะสม

การได้ Process List จากการทำ workshop เป็นเพียงผลลัพท์แรกเท่านั้น process ต่างๆที่คิดได้ยังต้องผ่านการพิจารณาในรายละเอียดและจัดทำเป็น business case ที่มีข้อมูลสนับสนุนในเชิง costs & benefits ที่เพียงพออีก เพื่อให้ผู้มีอำนาจตัดสินใจอนุมัติและรวบรวมเข้าไปในแผนการพัฒนาโครงการต่อไป

ปัญหาที่พบจากข้อสังเกตที่กล่าวถึงในบทความสามารถแก้ไขได้โดยการจัดการเวลาที่เหมาะสมเพียงพอ เช่นการให้ความรู้เชิงเทคโนโลยีกับผู้ใช้งานที่เพียงพอก่อนที่จะประเมินความเป็นไปได้ของการพัฒนากระบวนการทำงานต่างๆ และการใช้เครื่องมือหรือเทคนิคในการเก็บค่าสถิติของการทำงาน เช่น เวลาและขั้นตอนการทำงานที่แท้จริงไม่ใช่มาจากการคาดเดา จุด bottleneck ต่างๆของแต่ละกระบวนการทำงาน เป็นต้น เพื่อให้การทำ Process Discovery ได้ผลลัพท์ที่เกิดประโยชน์ที่แท้จริงแก่องค์กร

เพิ่มประสิทธิภาพการใช้งานของระบบ Legacy ด้วย RPA

ที่ทีมงาน Automat เราได้ทำงานร่วมกับลูกค้าหลายราย ที่ยังมีการใช้ระบบงานที่ได้รับการพัฒนามาแล้วหลายปี เรียกว่าระบบ Legacy อยู่ เช่นระบบงานบัญชีหรือระบบ HR ที่พัฒนาบนฐานข้อมูลชนิดเก่ามากระบบ Core Leasing หรือ Core Insurance ที่ยังทำงานอยู่บนเครื่อง AS400 เป็นต้น องค์กรยังคงใช้งานระบบเหล่านี้อยู่ เนื่องจากความเสถียรของระบบ การประยุกต์ใช้ RPA, Lowcode จะเพิ่มความสามารถอย่างไม่มีขีดจำกัด รวดเร็วและไม่ต้องลงทุนมากนัก

การปรับเปลี่ยนแอพพลิเคชั่นหรือการจัดหาแอพพลิเคชั่นใหม่เข้ามาใช้งานในองค์กร นับเป็นเรื่องสำคัญที่ผู้บริหารและผู้ที่เกี่ยวข้องต้องมีการตัดสินใจอย่างรอบคอบ เพื่อให้บรรลุเป้าหมายในการเพิ่มประสิทธิภาพการทำงานของแผนกต่างๆในองค์กร การสร้างความสามารถในการแข่งขัน และการปรับตัวเข้ากับสภาพการทำงานและความต้องการของลูกค้าที่เปลี่ยนแปลงรวดเร็วขึ้นเรื่อยๆ

แต่เนื่องจาก “เวลา” และ “งบประมาณ” ยังคงเป็นปัจจัยที่สำคัญของการพิจารณาแนวทางการทำงานของโครงการไอทีอยู่เสมอ เราจึงได้เห็นเทคโนโลยีอย่างการทำ automation เพื่อปรับปรุงกระบวนการทำงานบนระบบงานที่มีอยู่แล้วให้รวดเร็วขึ้น มีข้อผิดพลาดน้อยลง หรือเห็นเทคโนโลยีในด้าน application integration ที่ทำให้ระบบงานต่างๆที่มีอยู่สามารถเชื่อมต่อกัน เพิ่มความสะดวกให้แก่ผู้ใช้งาน ซึ่งเป็นการเพิ่มประสิทธิภาพการใช้งานของระบบที่มีอยู่ ก่อนจะถึงเวลาที่ต้องลงทุนจริงๆเพื่อเปลี่ยนเป็นระบบใหม่

จากประสบการณ์ที่ทีมงาน Automat เราได้ทำงานร่วมกับลูกค้าหลายรายที่ยังมีการใช้ระบบงานที่ได้รับการพัฒนามาแล้วหลายปีหรือที่เรียกว่าระบบ Legacy อยู่ เช่นระบบงานบัญชีหรือระบบ HR ที่พัฒนาบนฐานข้อมูลชนิดเก่ามากระบบ Core Leasing หรือ Core Insurance ที่ยังทำงานอยู่บนเครื่อง AS400 เป็นต้น องค์กรยังคงใช้งานระบบเหล่านี้อยู่เนื่องจากความเสถียรของระบบเองที่ได้รับการพิสูจน์แล้วอย่างยาวนาน และการที่ต้องลงทุนสูงทั้งในแง่ตัวระบบเองและการเปลี่ยนขั้นตอนการทำงานถ้าคิดจะนำระบบใหม่เข้ามาใช้งานแทน แต่ปัญหาหรือความท้าทายของการใช้แอพพลิเคชั่นอายุยืนที่องค์กรเหล่านี้ต้องเจอก็คือ

  1. ขาดการเชื่อมต่อกับระบบอื่น – ในกรณีที่ผู้ใช้งานมีความต้องการเพิ่มขึ้นจากสภาพการทำงานในปัจจุบัน เช่นอยากเพิ่มการติดต่อกับลูกค้าผ่านช่องทางโซเชียลมีเดีย หรือต้องการแลกเปลี่ยนข้อมูลกับแอพพลิเคชั่นที่อยู่บนระบบคลาวด์ จะทำได้ลำบากเนื่องจากเป็นระบบที่ถูกพัฒนาขึ้นเมื่อนานมาแล้ว โปรแกรม API ต่างๆยังไม่มีให้ใช้หรือขาดบุคคลากรที่พัฒนาได้
  2. ไม่สามารถรองรับรูปแบบการเข้าใช้งานที่เปลี่ยนไป – ระบบแอพพลิเคชั่นสมัยใหม่รองรับการทำงานนอกสถานที่หรือการทำงานจากที่บ้าน อีกทั้งยังสามารถใช้งานผ่าน device ได้หลายแบบ สอดคล้องกับวิถีชีวิตของผู้คน แต่ระบบ Legacy ไม่สามารถทำได้แบบนี้ 
  3. ไม่สามารถเพิ่มเติมฟังชั่นการทำงานได้ – ระบบ Legacy ที่เก่ามากๆจะไม่มีการอัพเกรดเวอร์ชั่นใหม่ๆแล้ว ทางเดียวที่จะเพิ่มฟังชั่นการทำงานได้ก็คือการเปลี่ยนไปใช้ซอฟท์แวร์ตัวใหม่เลยหรือถ้าไม่เก่ามาก ยังพอหาทีมงานที่สามารถพัฒนาต่อยอดได้ ทางผู้บริหารก็จะเกิดความลังเลว่าเป็นการลงทุนที่คุ้มค่าหรือไม่ กลัวว่าเสียเงินลงทุนพัฒนาไปแล้วจะใช้ไปอีกไม่นาน ทำให้ผู้ใช้งานต้องอยู่กับระบบเดิมต่อไป

อย่างไรก็ตาม จากเคสที่เราพบ เครื่องมีอที่ใช้พัฒนาระบบงานอัตโนมัติอย่าง RPA (Robotic Process Automation) สามารถใช้กับระบบงาน Legacy ได้ค่อนข้างดี เนื่องจากความแม่นยำของการจับปุ่ม ตาราง และข้อความต่างๆผ่านหน้าจอแอพพลิเคชั่นตามแบบที่มนุษย์ทำงาน และเมื่อศึกษาเปรียบเทียบเทคโนโลยีหรือแนวทางต่างๆในการเชื่อมต่อระบบแอพพลิเคชั่น การใช้ RPA ก็นับเป็นทางเลือกที่น่าสนใจดังข้อมูลในตารางด้านล่าง

จากตารางดังกล่าว ถึงแม้การใช้ RPA จะมีความเหมาะสมหรือคะแนนในเรื่องการขยายระบบ (Scalability) ด้อยกว่าการทำ Integrated application หรือการใช้ API แต่ RPA ก็เป็นโซลุชั่นที่เหมาะสมมากกว่า ถ้ามองจากเรื่อง เวลาที่ทำได้เร็วกว่า ต้นทุนที่ต่ำกว่า และความหลากหลายของฟังชั่นการใช้งาน (Versatility) ที่มากกว่า

นอกจากนี้แล้ว ผู้ผลิตซอฟท์แวร์ RPA บางเจ้ายังมีการเพิ่มส่วนที่เรียกว่า Low-Code Application เข้ามาใน RPA Platform ของตนเอง ทำให้การสร้างฟอร์มหรือ Dashboard สำหรับนำข้อมูลเข้าหรือออกจากระบบแอพพลิเคชั่นทำได้อย่างรวดเร็ว เป็นการนำประโยชน์ของการสร้าง app ที่รวดเร็วของซอฟ์ทแวร์ Low-Code มาใช้งานร่วมกับ RPA ที่มีจุดเด่นของการทำงานกับแอพพลิเคชั่นที่การเชื่อมต่อผ่านการเขียนโปรแกรมหรือ API เป็นไปได้ยาก

ถ้าเราเป็นฝ่ายเทคโนโลยีขององค์กรที่มีหน้าที่แสวงหาระบบหรือเครื่องมือ เพื่อช่วยเหลือให้ผู้ใช้งานในแผนกต่างๆขององค์กรสามารถทำงานได้สะดวก มีประสิทธิภาพเพิ่มขึ้น การเพิ่มช่องทางให้ผู้ใช้งานให้ทำงานกับระบบหลังบ้าน ไม่ว่าจะเป็นระบบที่ทันสมัยอยู่แล้วหรือระบบ Legacy ที่กล่าวถึงในบทความนี้ ย่อมก็ให้เกิดประโยชน์ต่อองค์กรในภาพรวม

ตัวอย่างในคลิป YouTube ตอนท้ายของบทความนี้ เป็นการจำลองรูปแบบการทำงานที่ผู้ใช้งานไม่จำเป็นต้องทำงานผ่านหน้าจอของระบบ Legacy แต่เป็นสั่งงานผ่านเว็บที่พัฒนาขึ้นด้วยเครื่องมือ Low-Code ไปที่โรบอท และให้โรบอทป้อนข้อมูลเข้าหรือแสดงผลที่ได้จากระบบ Legacy กลับมาที่ผู้ใช้งานที่ทำงานผ่านหน้าเว็บหรือผ่าน Smart Phone นับเป็นการเพิ่มช่องทางให้ผู้ใช้งานทำงานของตนเองบนระบบ Legacy ได้สะดวกมากยิ่งขึ้น

UiPath low-code app to solve Legacy  systems process flow

ยังคงมีการประยุกต์แนวคิดในลักษณะการใช้ low code ในรูปแบบอื่น ๆเพื่อรองรับการทำ business workflow หรือการใช้ RPA ในการทำกระบวนการที่มีความซับซ้อนและขั้นตอนยาวๆ มากๆ มีคนเกี่ยวข้องด้วยหลายแผนกหรือหลายๆคน ผู้เขียนจะขอนำมาเสนอในบทความต่อไปครับ

RPA for Human Resource #2

กระบวนการอัตโนมัติสำหรับงานบุคคล

บทความวันนี้จะลงรายละเอียดในเรื่อง RPA for HR ซึ่งจะเน้นไปในการยกตัวอย่าง use case ในกระบวนการ HR “From hire until retired” ตั้งแต่วางแผนกำหนดกำลังคน ไปยังประกาศหา (รับสมัคร) สัมภาษณ์ บรรจุ ฝึกอบรม จ่ายเงินเดือน การทำรายงาน คำนวณเวลาเข้าออกงาน ประเมินผลงาน และอื่นๆ ตลอดกระบวนการทั้ง HRM, HRD

โดยตัวอย่างภาพด้านล่างเป็นภาพกระบวนการต่างๆที่เราสามารถประยุกต์ใช้งาน robot มาช่วย HR ในภาระงานเช่นคำนวณเงินเดือน (robot ตั้งสูตร ดึงข้อมูลเวลาเข้าออกงานอัตโนมัติจากระบบเป็นต้น) ภาระงานทำรายงานต่างๆ (ใช้ robot ดึงข้อมูลตามเวลาที่ตั้งไว้ เอามาทำสูตรใน excel และทำกราฟนำเสนอเป็นสไลด์ใน powerpoint แบบคนไม่ต้องยุ่งเกี่ยวได้เลย) ทั้งนี้ยังมีตัวอย่างอีกหลากหลายมากที่นำมาใช้ได้

อีกหนึ่งตัวอย่างที่แอดมินเคยทำคือใช้ robot มาช่วยในการอ่านข้อมูลผู้สมัครงาน (resume) โดยวิธีนี้แอดมินใช้ robot เปิดระบบหลังบ้านของ jobsDB หรือ jobsThai แล้วเข้าระบบหลังบ้าน ใส่ filter เพื่อค้นเอาเฉพาะตำแหน่งที่เราต้องการ จากนั้นโหลดไฟล์resume ที่ไม่มีโครงสร้างออกมาอ่าน หรือในอีกทางหนึ่งหากเป็นระบบหลังบ้านที่จะทำการส่ง email มาให้ HR เมื่อมีผู้สมัครส่งข้อมูลเข้ามาก็ตั้งค่าให้ robot ทำการเช็คเมล และอ่านเอกสารแนบ (attachment files) ได้ทันที คลิปวิดีโอด้านล่างเป็นอีกหนึ่งตัวอย่างที่ใช้ robot ทำงานอ่าน resume

ใช้ RPA + ai ช่วยในการรับสมัครงาน

RPA + ai for HR

ใช้ RPA+ ai ช่วยในการผูกใจพนักงานรุ่นใหม่ที่บริษัทมีหุ่นยนต์เป็นตัวอย่างในการทำงาน

ภาวะการปัจจุบันส่งผลมากต่อการลาออกของพนักงานจำนวนมาก กระทบต่อสภาพกำลังใจ ภาระงานที่ต้องต่อไปสู่ทีมงานชัดเจน รายงานวิจัยบอกชัดเลยว่า 71% มองว่าการที่องค์กรมี RPA ช่วยงานพนักงานจะสามารถทำให้เค้าโฟกัสอยู่ที่งานที่มีคุณค่า ส่งผลให้ทีมงานสร้างผลงานได้มากขึ้น (หรือไม่น้อยกว่าเดิม) และในอีกมุมคือเป็นจุดที่ช่วยดึงดูดทีมงานรุ่นใหม่ๆ ที่เข้าใจและพร้อมปรับตัวไปกับโลกเทคโนโลยีอย่าง ai มาร่วมงานได้อีกด้วย และเมื่อ HR ทำหน้าที่ในการสนับสนุนช่วยหาระบบ RPA ที่ดีมาใช้ในองค์กร จากผลงานวิจัยบอกว่าพนักงานเมื่อมีหุ่นยนต์มาช่วยเค้าจะจัดสรรเวลาได้ดีมากยิ่งขึ้นไปอีกจาก จากผลวิจัยบ่งบอกว่างานหลักยังเป็นเรื่องเดิมๆ วนๆมาให้ทำซ้ำๆ เช่น งานการอ่านและตอบอีเมล 42% งานประชุม 35% และงานคีย์ข้อมูลเข้าระบบซ้ำๆถึง 34% ทั้งนี้หากได้มีการประยุกต์ใช้ robot มาช่วยพนักงานเชื่อว่าเค้าจะจัดสรรเวลาสำหรับงานสร้างสรรค์ใหม่ๆได้ดีขึ้น

  • 22% เพื่อสื่อสารกับลูกค้าหรือทีมงาน
  • 17% เพื่อคิดหาโอกาสใหม่ๆ
  • 16% สำหรับการวางแผนงานเชิงกลยุทธ์ 

โดย 91% เชื่อมั่นว่าเมื่อองค์กรได้ใช้ automation อย่างเต็มที่งานของตนเองจะพัฒนาขึ้นได้ แต่ฝ่าย HR ที่ทำหน้าที่หลักเรื่องการพัฒนาทรัพยากรต้องเชื่อมั่นและเชิญชวนให้พนักงานเข้ารับการฝึกอบรมตามโปรแกรมที่เหมาะสม

อีกหลากหลายตัวอย่างที่จะนำเสนอเช่น

  • งานเอกสารที่ต้องรับส่งสำหรับพนักงานใหม่ (ที่ผ่านการสัมภาษณ์)
  • งานการคีย์ข้อมูลเข้าระบบสำหรับ new-hire onboarding ที่ต้องส่งต่อเพื่อร่วมงานกับทีมงานไอทีในการสร้าง “ตัวตน” ของพนักงานสำหรับระบบต่างๆขององค์กร สิทธิต่างๆ รหัสผ่านและอื่นๆ
  • งาน expense management งานเบิกจ่ายที่ยังต้องรวบรวมใบเสร็จ บิลจอดรถ ค่าอาหารและการเดินทางและนำเข้าสู่ระบบด้วยการคีย์งาน การอนุมัติ
  • งานประเภท attendance tracking หรืองานที่ต้องนำข้อมูลจาก time sheet ต่างๆ ทั้งมีระบบและเป็น excel เข้าสู่ระบบการคำนวนรายได้พนักงาน
  • งานการจ่ายเงินเดือน โดยเป็นการนำเอาหุ่นยนต์ไปช่วยดึงข้อมูลจากแหล่งต่างๆ มาวางตามตำแหน่งและจัดสูตรคำนวนเพื่อป้องการความผิดพลาดของมนุษย์เป็นต้น

ยังคงมีเรื่องราวของการประยุกต์ใช้งาน RPA กับงาน HR อีกอย่างมากมาย ซึ่งผู้เขียนจะนำมาเล่าในบทความต่อๆไปอีกครับ 

Source:

https://www.uipath.com/blog/digital-transformation/hybrid-work-model-needs-new-tech-stack

https://www.uipath.com/newsroom/new-uipath-study-reveals-half-of-office-workers-seeking-resignation?utm_source=marketo&utm_medium=blog_weekly_email&utm_content=06may2022

การประยุกต์ใช้ระบบ RPA กับกระบวนการ Know-Your-Customer (KYC)

สวัสดีครับ

กระบวนการรู้จักลูกค้า (Know-Your-Customer or KYC) เป็นมาตรการที่เราคุ้นเคยกันดี เนื่องจากเรามักจะถูกขอให้ชี้แจงข้อมูลส่วนตัวอยู่เสมอเวลาที่ขอเปิดบัญชีเงินฝาก บัญชีซื้อขายหลักทรัพย์หรือกระทั่งการขอความคุ้มครองจากการซื้อกรมธรรพ์ประกันภัย กับสถาบันการเงินอย่าง บริษัทหลักทรัพย์ หรือบริษัทประกันภัย เป็นต้น

KYC จะมาคู่กับคำว่า CDD หรือ Customer Due Diligence ซึ่งเป็นการตรวจสอบข้อเท็จจริงเกี่ยวกับลูกค้า โดยมีกระบวนการประเมินและจัดการความเสี่ยง การติดตามความเคลื่อนไหวทางการเงินก่อนการอนุมัติรับลูกค้า พักหลังเราเลยจะได้ยินคำว่า KYC/CDD มากกว่า KYC เฉยๆ 

บริษัทต่าง ๆ โดยเฉพาะบริษัทในกลุ่มสถาบันการเงินมีการใช้ KYC/CDD เพื่อทำความรู้จักและพิสูจน์ตัวตนลูกค้าว่าเป็นบุคคลรายนั้นจริง เพื่อป้องกันการทุจริตจากการปลอมแปลงหรือใช้ข้อมูลบุคคลอื่นในการทำธุรกรรมทางการเงิน รวมถึงเป็นมาตรการป้องกันและปราบปรามการฟอกเงิน และการสนับสนุนทางการเงินแก่การก่อการร้าย หรือการกระทำความผิดอื่น ๆ 

ทั้งนี้หน่วยงานที่มีหน้าที่กำกับดูแล เช่น ธนาคารแห่งประเทศไทย สำนักงาน ปปง. สำนักงาน คปภ. เป็นต้น ต่างออกหลักเกณฑ์และข้อปฎิบัติของหน่วยงานภายใต้การกำกับดูแลของตนเองสำหรับการทำ KYC ก่อนการทำธุรกรรมกับลูกค้า รวมทั้งผลที่ตามมาเช่น ค่าปรับ ในกรณีที่บริษัทไม่มีกระบวนการกำกับ ควบคุมและกลั่นกรองการ KYC/CDD ที่เป็นมาตรฐาน 

เรียกได้ว่างาน KYC/CDD นี้มีความสำคัญในลักษณะที่เป็นภาคบังคับที่ต้องทำของบริษัทหรือองค์กรที่ถูกกำหนดให้ต้องทำเรื่องเหล่านี้ และการที่ต้องรักษาขั้นตอนการทำงานให้เป็นมาตรฐานอยู่ตลอดเวลาก็ถือเป็นหน้าที่ และภาระของเจ้าหน้าที่ผู้รับผิดชอบที่ใช้เวลากับเรื่องนี้พอสมควร

การทำ KYC หรือ KYC/CDD นี้ สามารถเกิดขึ้นได้ทั้งผ่านระบบออฟไลน์ เช่นการไปทำธุรกรรมที่ธนาคาร เพื่อให้ธนาคารเทียบระหว่างหน้าบัตรกับหน้าจริง ๆ ของเรา หรือว่าทางออนไลน์ที่เรียกว่า E-KYC โดยมักเริ่มต้นด้วยการเก็บข้อมูลพื้นฐานของลูกค้า เช่น ชื่อ เลขประจำตัวประชาชน วันเกิด หรือที่อยู่ บริษัทสามารถให้ลูกค้าของตนเองทำ KYC ได้หลายรูปแบบแล้วแต่ข้อบังคับหรือความจำเป็นทางธุรกิจของแต่ละบริษัท

จากธรรมชาติของงานที่มีเงื่อนไขการทำงานที่ชัดเจน การที่องค์กรต่าง ๆ มีการใช้แอพพลิเคชั่นและช่องทางติดต่อกับลูกค้าแบบออนไลน์ และเป็นข้อมูล digital อยู่แล้วในสัดส่วนที่มาก และมีปริมาณธุรกรรมเป็นจำนวนมาก ทำให้กระบวนการ KYC/CDD มีความเหมาะสมในการนำโรบอทของระบบ Robotic Process Automation (RPA) เข้ามาช่วยทำงาน ส่วนที่ว่าโรบอทต้องทำอะไรบ้างนั้นผมขอใช้ Workflow Diagram ของ UiPath ในการช่วยอธิบายครับ 

จาก Diagram ด้านล่าง เราสามารถนำ RPA เข้ามาทำงานในส่วนนี้ได้ตั้งแต่ขั้นตอนแรกคือการติดต่อกับลูกค้าจนถึงการเปิดบัญชีให้ลูกค้าได้ซึ่งเป็น output ของกระบวนการ

UiPath RPA flow – KYC

สถาบันการเงินที่เป็นธนาคารหรือองค์กรทางการเงินประเภทอื่น ๆ สามารถประยุกต์การทำงานจากขั้นตอนเหล่านี้ได้เหมือนกันโดยเริ่มจาก

  1. Onboarding request: สถาบันการเงินที่มีช่องทางติดต่อหลายช่องทางกับลูกค้าตนเองหรือลูกค้าเป้าหมายจะได้เปรียบเพราะสามารถเปิดโอกาสให้ลูกค้าได้ส่งคำขอเปิดบัญชีได้หลายช่องทางทั้ง online ผ่าน website/Chatbot, ตู้ Kiosk หรือที่สาขา เข้ามาที่ส่วนกลางโดยมีโรบอททำหน้าที่รับข้อมูลที่เข้ามา ระบุจุดที่ข้อมูลมาไม่ครบหรือส่วนของข้อมูลที่น่าจะผิด เราสามารถใช้ทั้งโรบอทแบบ attended หรือ unattended เข้ามาจัดการตรงนี้ ขึ้นอยู่กับช่องทางที่คำขอเปิดบัญชีเข้ามา

2&3 Prove of identity/income verification: ขั้นตอนนี้จะเป็นการตรวจสอบความถูกต้องของเอกสารยืนยัน ตนเองซึ่งก็มักจะเป็นเอกสารที่ออกให้โดยหน่วยงานราชการอย่าง บัตรประชาชน สำเนาทะเบียนบ้าน รวมทั้งเอกสารอื่น ๆ ที่จำเป็นต้องใช้เพื่อแจกแจงที่มาของเงินทุนหรือความสามารถในการลงทุน ในกรณีการเปิดบัญชีด้านการลงทุน ก็ต้องใช้เอกสารอย่าง slip เงินเดือน สมุดปัญชีเงินฝาก ฟอร์ม FATCA เป็นต้น ทั้งนี้การตรวจสอบเอกสารดังกล่าวจะต้องใช้ฟังชั่น Optical Character Recognition (OCR) เข้ามาอ่านข้อมูลให้เป็นข้อมูล digital ก่อนจะนำไป validate เพื่อตรวจสอบความถูกต้องต่อไป

4. Sanction and Politically Exposed Person (PEP) screening: การตรวจสอบสถานภาพบุคคลว่าอยู่ในข่ายที่กำลังถูกแซงชั่น หรือคว่ำบาตรจากการกระทำผิดหรือมีความเสี่ยงเกี่ยวกับสถานภาพทางการเมืองหรือไม่ ในกรณีของประเทศเราสามารถประยุกต์เข้ากับความเสี่ยงของการเกี่ยวข้องกับผู้กระทำผิดหรือติด แบล็คลีสต์ที่เป็นข้อต้องห้ามของการทำธุรกรรม ซึ่งสามารถใช้โรบอทตรวจสอบชื่อหรือข้อมูลส่วนตัวกับฐานข้อมูลผู้กระทำผิดได้

5. Risk rating approval: โรบอทสามารถใช้ข้อมูลทั้งหมดที่ถูกรวมรวมจากขั้นตอนที่ได้กล่าวถึง มาสร้างเป็นโปรไฟล์ของลูกค้านั้น ๆ แล้วส่งต่อเข้ากระบวนการขออนุมัติตามลำดับขั้นของความเสี่ยง (Risk Category) ที่ถูกกำหนดขึ้น

6. Onboarding and account creation: เมื่อคำขอเปิดบัญชีได้รับการอนุมัติแล้ว โรบอทจะสร้างบัญชีของลูกค้าพร้อมข้อมูลต่าง ๆ ที่เกี่ยวข้องกับลักษณะของบัญชีนั้น ๆ ในระบบแอพพลิเคชั่นหลักเช่นระบบ Core Insurance, Core Banking, Loan Application เป็นต้น รวมทั้งการแจ้งผลการอนุมัติแก่ลูกค้าทางอีเมลและเปิดใช้บริการที่ร้องขอต่อไป

กระบวนการ RPA สำหรับงาน KYC/CDD ของสถาบันการเงินสามารถช่วยให้องค์กรประหยัดชั่วโมงการทำงานของเจ้าหน้าที่ลงได้มาก เนื่องจากปริมาณคำขอเปิดบัญชีประเภทต่าง ๆ มีจำนวนมากในแต่ละวัน ซึ่งเป็นผลมาจากการที่สถาบันการเงินต่าง ๆ มีผลิตภัณฑ์ใหม่ๆออกสู่ท้องตลาดอยู่ตลอดเวลา ประกอบกับวิถีชีวิตของประชาชนที่มีความสะดวกเพิ่มขึ้นในเรื่องการคมนาคมและการเชื่อมต่อกับโลกออนไลน์ทำให้การตัดสินใจขอเปิดบัญชีใหม่เป็นเรื่องง่ายและทำได้เร็ว ในขณะที่งาน KYC/CDD เองถือเป็นการปฎิบัติตามกฎของหน่วยงานกำกับดูแลซึ่งไม่ควรให้เกิดข้อผิดพลาดขึ้นได้

ส่วนการเลือกใช้ประเภทของโรบอทว่าควรใช้แบบ attended ในส่วนไหนและ unattended ในส่วนไหนสามารถยึดตาม Diagram หรือปรับใช้สำหรับการทำงานในสภาวะแวดล้อมของเราเองซึ่งขึ้นอยู่กับ ช่องทางการติดต่อกับลูกค้า ข้อจำกัดด้านบุคคลากร ปริมาณธุรกรรมที่มี เป็นต้น

ผมหวังว่าบทความนี้จะเป็นประโยชน์สำหรับทั้งท่านที่กำลังคัดเลือกกระบวนการทำงานเพื่อนำมาเป็นพัฒนาเป็นระบบงานอัตโนมัติไม่ว่าท่านจะมีการใช้งาน RPA อยู่แล้วในองค์กร หรือกำลังประเมินความคุ้มค่าในการเริ่มนำเข้ามาใช้ครับ

แล้วพบกันใหม่ครับ….

สอนโรบอทให้เข้าใจเอกสาร ตอนที่ 2 – Combining Intelligent Document Processing with RPA

สวัสดีทุกท่านอีกครั้งครับ  

เรายังอยู่ในซีรี่การสอนโรบอทให้เข้าใจเอกสารซึ่งในตอนที่แล้ว เราได้พูดถึงเทคโนโลยี Intelligent Document Processing (IDP) ที่มีการนำ AI เข้ามาเสริมการใช้งานของฟังชั่น OCR และทำให้โรบอทสามารถอ่านข้อมูลจากเอกสารได้หลากหลายชนิดมากขึ้นทั้งเอกสารที่เป็นแบบ semi-structured และแบบ unstructured ผ่านการนำ machine learning models เข้ามาวิเคราะห์รูปแบบของเอกสาร นอกเหนือไปจากการอ่านข้อมูลของเอกสารแบบ structured ที่ OCR ทำได้อยู่แล้ว 

ในตอนที่ 2 นี้ เราจะมาลงในรายละเอียดเพิ่มเติมสำหรับบางขั้นตอนที่สำคัญของงาน IDP อย่าง

  • การ classify ชนิดของเอกสาร
  • การ extract ข้อมูลจากตัวของเอกสาร
  • และการทำ validation ข้อมูลที่อ่านออกมาโดยผู้ใช้งาน เพื่อแก้ข้อมูลที่อ่านผิดและช่วยเหลือโรบอทให้พัฒนาการอ่านให้แม่นยำขึ้น

ส่วนขั้นตอนทั้งหมดของงาน IDP ผมได้อธิบายไว้ในตัวอย่างการอ่านข้อมูลจากใบแจ้งหนี้ของบทความที่แล้ว ท่านที่สนใจสามารถย้อนกลับไปอ่านในบทความตอนที่ 1 ได้ครับ

การ classify ชนิดของเอกสาร

เพื่อให้การนำ IDP มาใช้กับระบบอัตโนมัติที่เกี่ยวข้องกับเอกสารในองค์กร้เกิดความคุ้มค่า ระบบ IDP ควรจะต้องถูกใช้กับเอกสารหลายชนิดเพื่อลดงาน manual ในการ key ข้อมูลจากเอกสารเข้าระบบให้มากที่สุด  การ classify ชนิดของเอกสารจะเกิดขึ้นเมื่อเรามีเอกสารที่ต้องการอ่านมากกว่า 1 ชนิด เช่นในกระบวนการสรุปยอดค่าใช้จ่ายที่ต้องรวบรวมทั้ง ใบเสร็จ ใบกำกับภาษี ใบรับรองแพทย์ บิลน้ำมัน ฯลฯ ซึ่งโรบอทต้องเข้าใจว่าเอกสารที่ตัวเองกำลังอ่านอยู่นั้น เป็นเอกสารชนิดใด 

หรือในกรณีที่เราต้องการอ่านข้อมูลจากเอกสารเพียงบางหน้าเท่านั้นจากชุดเอกสารหลายหน้าที่ถูกส่งเข้ามา ซึ่งในกรณีนี้ เอกสารทั้งชุดต้องถูก classify เพื่อแยกเฉพาะหน้าที่โรบอทต้องอ่านข้อมูลออกจากหน้าอื่นในชุดเอกสารที่เหลือ

รูปภาพด้านล่างแสดงลักษณะการ classify เอกสารออกเป็นชนิดต่างๆของ UiPath Document Understanding ด้วยตัวคัดแยกหรือ classifier ที่ชื่อ Intelligence keyword Classifier ซึ่งจะให้ค่าระดับความเชื่อมั่นหรือ Confidential Level ในการ classify ชนิดหรือประเภทเอกสารมาด้วย เราสามารถใช้ค่าความเชื่อมั่นนี้มากำหนดเป็น threshold สำหรับเปิดหน้าจอValidation Station ให้ผู้ใช้งานที่เป็นมนุษย์เข้ามาแก้ไขหรือยืนยันความถูกต้องของการ classify โดยโรบอทได้ ซึ่งจากรูปภาพ ถ้าผู้ใช้งานพบว่าโรบอท classify เอกสารไหนผิด ก็สามารถทำการ drag and drop เอกสารไปอยู่ในกลุ่มที่ถูกต้องได้   

ตัวคัดแยกหรือ classifier นี้มีให้เลือกใช้ได้หลายชนิดทั้งแบบที่ใช้ keyword กำหนดค่าตรงๆจากตัวอักษรบนเอกสารและแบบที่ต้องมองกลุ่มคำหรือรูปแบบข้อความในเอกสารเพื่อใช้เป็นเกณฑ์การจำแนกประเภท

UiPath Document Understanding – classifier 

การ extract ข้อมูลจากตัวของเอกสาร

โรบอทใช้ extractor ในขั้นตอนการอ่านข้อมูลจากเอกสาร จากบทความตอนที่แล้ว ข้อมูลที่ยังไม่เป็น digital เช่นเอกสารกระดาษที่ถูกสแกนเป็นไฟล์รูปภาพ จะถูกทำให้เป็น digital ด้วย OCR เพื่อให้โรบอทอ่านได้ จากนั้นจึงเป็นการ classify เอกสารให้ตรงประเภทเพื่อที่ข้อมูลจะถูก extract ด้วย extractor ตามตำแหน่งและตาม field ที่กำหนดไว้อย่างถูกต้อง

ใกล้เคียงกับการเลือก classifier เรามี extractor หลายตัวให้เลือกใช้ขึ้นอยู่กับรูปแบบเอกสารและ field ที่โรบอทต้องการอ่าน ยกตัวอย่างเช่น ถ้าเป็นฟอร์มที่มีลักษณะตายตัว มีข้อมูลที่อยู่ในตำแหน่งเดียวกันทั้งเอกสารไม่ว่าจะมีกี่แผ่นก็ตามอย่างเช่น แบบฟอร์มเคลมประกัน เราสามารถใช้ Form Extractor ได้ แต่ถ้าเรามีเอกสารที่เป็นลักษณะ semi-structured อย่างใบแจ้งหนี้ (Invoice) ที่มีทั้งส่วนที่ค่อนข้างคงที่อย่างส่วนต้นเอกสารซึ่งประกอบด้วยเลขที่ใบแจ้งหนี้ วันที่ ชื่อบริษัท และส่วนที่ไม่ค่อยคงที่อย่างส่วนตารางที่ระบุชนิดและจำนวนของผลิตภัณฑ์หรือบริการที่เราซื้อมา อีกทั้งมีความต่างกันในแต่ละเจ้าหนี้ เราสามารถใช้ ML Extractor มาช่วยวิเคราะห์รูปแบบและตำแหน่งบนเอกสาร

รูปภาพด้านล่างแสดงการกำหนด extractor ให้อ่านเอกสารแบบต่างๆที่เราต้องการข้อมูล เราสามารถใช้ extractor มากกว่าหนึ่งตัวต่อหนึ่งเอกสารได้ เช่น ใช้ Intelligence Form Extractor สำหรับอ่าน field ที่เป็นลายมือเขียนหรือช่องลายเซ็นต์ และใช้ extractor แบบอื่นเพื่ออ่านส่วนที่เหลือของเอกสาร เป็นต้น

UiPath Document Understanding labelling and extractor

ระบบจะเลือก extractor ตามลำดับจากซ้ายไปขวาถ้าค่า confident ไม่ได้ตามที่ตั้งไว้หรือเลือกโดยค่าที่กำหนดผ่าน checkbox ตามภาพ ถ้าโรบอทอ่านข้อมูลได้เกินระดับความเชื่อมั่นหรือ threshold ที่กำหนด ข้อมูลจะถูกส่งต่อไปยังส่วนอื่นๆของกระบวนการทำงานตามที่ออกแบบไว้ แต่ถ้าค่าที่อ่านได้ต่ำกว่าค่า threshold เราสามารถออกแบบให้มีการใช้คนเข้ามา validate ข้อมูลก่อนนำไปใช้

การทำ validation ข้อมูลที่อ่านออกมาโดยผู้ใช้งาน

โรบอทจะ extract ข้อมูลจากเอกสารพร้อมกับให้ค่าระดับความเชื่อมั่นหรือ Confidential Level ว่าโรบอทมั่นใจกับค่าที่อ่านได้แค่ไหน เราสามารถกำหนดเป็น threshold ให้ระบบเปิด Validation Station ขึ้นมาให้ผู้ใช้งานที่เป็นมนุษย์เข้ามาแก้ไขหรือยืนยันการอ่านค่าของ extractor ตามรูปภาพด้านล่าง

UiPath Document Understanding – validation

ผู้ใช้งานที่เป็นมนุษย์จะแก้ไขข้อมูลที่โรบอท extract ออกมาทางด้านซ้ายหรือยืนยันความถูกต้องผ่าน checkbox (ถ้าข้อมูลที่อ่านมาถูกต้องตามเอกสารด้านขวามือ) ในกรณีที่เลือกใช้ ML model extractor เราสามารถกำหนดให้ข้อมูลที่ได้รับการแก้ไขหรือยืนยันแล้วกลับไป train model เพิ่มเติมได้ 

ทั้งนี้การที่เราสามารถเลือกใช้เครื่องมือที่เหมาะสมสำหรับงาน IDP ในแต่ละขั้นตอนตั้งแต่

  • การเลือก OCR Engine ที่แปลงข้อมูลรูปภาพเป็น digital ได้อย่างถูกต้องตามรูปแบบและคุณภาพเอกสาร
  • การใช้ classifier ที่เหมาะสมในการจำแนกชนิดเอกสาร 
  • การเลือกใช้ extractor ตามชนิดเอกสารและ field ที่ต้องอ่านข้อมูล

จะทำให้คุณภาพของข้อมูลที่อ่านได้มีความถูกต้องแม่นยำขึ้น ไม่เป็นภาระให้ผู้ใช้งานต้องมา verify ความถูกต้องของข้อมูลที่โรบอทอ่านมากจนเกินไป

ผมหวังว่าบทความทั้ง 2 ตอนนี้สามารถให้ภาพแก่ท่านผู้อ่านว่าเราสามารถก้าวข้ามอุปสรรคหลายอย่างที่เกิดขึ้นอดีต ในการนำข้อมูลจากเอกสารขององค์กรมาใช้ในงาน RPA ได้หลากหลายชนิดขึ้น แม่นยำขึ้น ด้วยการใช้ AI เข้ามาเสริมการทำงานแบบ rule-based ที่ยังต้องมีอยู่

ในตอนถัดไปซึ่งจะเป็นตอนที่ 3 ของซีรี่การสอนโรบอทให้เข้าใจเอกสาร เราจะไปดูเรื่องการสอนหรือ train โรบอทจริงๆเพื่อให้ได้ ML model extractor ว่ามีขั้นตอนอย่างไรและมี model ไหนที่ได้รับการสอนหรือ pre-trained ไว้แล้ว สามารถหยิบมาใช้ได้เลยครับ

แล้วพบกันครับ

Source: UiPath Document Understanding

เมื่อคนและหุ่นยนต์ประสาน ทำงานร่วมกัน (Human-Bot Collaboration)

สวัสดีปีใหม่ 2565 ครับ

ประเด็นหนึ่งที่มักถูกนำมาพูดคุยเวลาที่ทีมงานเราได้มีโอกาสพบปะพูดคุยกับลูกค้าหรือผู้ที่มีความสนใจในการนำระบบ RPA เข้ามาใช้ในองค์กรคือ โรบอทสามารถทำงานแทนคนได้แค่ไหน ทำได้หมดเลยหรือแค่บางส่วน ผมคิดว่าเรื่องนี้น่าจะมีประโยชน์ถ้านำมาเล่าในบทความนี้

ก่อนอื่นต้องเข้าใจก่อนว่าเราสามารถแยกประเภทของโรบอทตามรูปแบบของการทำงานได้ 2 แบบคือ 

  • Attended
  • Unattended

โรบอทประเภท attended ที่ทำงานเหมือนเลขาส่วนตัวของเรา ติดตั้งอยู่บนเครื่องคอมพิวเตอร์ของเราเอง โดยมีตัวเราเป็นผู้ออกคำสั่งให้ทำงานต่างๆแทนเรา เช่น ร้บส่งอีเมล ทำรายงาน นำข้อมูลเข้าระบบ เป็นต้นและโรบอทประเภท unattended ที่ทำงานได้เองโดยไม่ต้องมีคนสั่ง โดยมากมักเป็นงานในฝั่ง back office เช่นบัญชี ออกสัญญาเช่าซื้อ ออกกรมธรรม์ ที่มีปริมาณมาก ใช้เวลานานในการทำ โดยอาจนานกว่าขั่วโมงการทำงานปกติของผู้ที่เป็นพนักงาน 

เรายังสามารถนำโรบอททั้งประเภท attended และunattended เข้ามาทำงานร่วมกันเกิดเป็นกระบวนการทำงานที่เรียกว่า hybrid ที่มีคนสั่งงานโรบอท attended ทำงาน โดยมีโรบอทประเภท unattended ทำงานบางอย่างอยู่เบื้องหลัง

คำถามที่ว่าโรบอทสามารถทำงานแทนคนได้แค่ไหน หรือคนสามารถทำงานร่วมกับโรบอทได้แค่ไหน สามารถอธิบายด้วยรูปแบบการทำงานหรือ scenario ดังต่อไปนี้ครับ

รูปแบบการทำงานแบบแรก คือการที่โรบอทประเภท unattended ทำงานเองทั้งหมดหรือที่เรียกว่า “fully automated” โดยโรบอทหนึ่งตัวหรือมากกว่าหนึ่งตัวจะถูกติดตั้งบนเครื่อง back office server ซึ่งมีเจ้าหน้าที่แอดมินเป็นผู้จัดสรรทรัพยากรต่างๆ เช่น workload ตามจำนวนโรบอทที่มี หรือ schedule การทำงานของโรบอทแต่ละตัวให้สอดคล้องกับกระบวนการทำงาน

ตัวอย่างของกรณีนี้เช่น บริษัทชั้นนำด้านการเงินแห่งหนึ่งต้องมีการรวบรวมข้อมูลด้านยอดขายจากหน่วยธุรกิจและสาขาของบริษัทในแต่ละประเทศ โดยดึงจากระบบแอบพลิชั่นองค์กรอย่างระบบ CRM, ระบบ ERP รวมทั้งฐานข้อมูลด้านการขายทั้งหมด แล้วนำมาจัดเป็นหมวดหมู๋ เรียงลำดับ ตรวจสอบความถูกต้องสำหรับทำเป็นเวอร์ชั่นสุดท้ายก่อนนำส่งให้ผู้บริหารระดับสูง

การทำงานรูปแบบนี้ โรบอทประเภท Unattended สามารถทำงานได้เองทั้งหมดตั้งแต่ต้นจนจบ โดยไม่ต้องมีพนักงานเข้ามามีส่วนร่วม ทำให้งานทั้งหมดเสร็จด้วยความรวดเร็วและถูกต้อง

รูปแบบการทำงานถัดมาเรียกว่า “partially automated” หรือ “partially unattended” ซึ่งจะแบ่งการทำงานกันโดยให้โรบอททำงานที่มีลักษณะซ้ำๆ มีกฎเกณฑ์ มีปริมาณมากซึ่งโรบอทจะทำได้ดีกว่าคน และเมื่อโรบอททำงานของตัวเองเสร็จแล้ว ก็ส่งต่อให้คนทำต่อในเรื่องที่ต้องมีการวิเคราะห์หรือตัดสินใจ ซึ่งเป็นเรื่องที่คนทำได้ดีกว่า

รูป flow การทำงานด้านล่างแสดงการทำงานในลักษณะ partially automated ของกระบวนการประเมินมูลค่าสินทรัพย์เช่นที่ดิน โรงงาน ซึ่งเริ่มจากพนักงานต้องคัดเลือกผู้ประเมินที่เหมาะสมมีประสบการณ์ กำหนดขอบเขตการประเมิน รวบรวมข้อมูลที่เกี่ยวข้องให้ครบตามเงื่อนไข จากนั้นส่งต่อให้โรบอททำการคำนวนและประเมินมูลค่าสินทรัพย์แต่ละรายการ ซึ่งเดิมพนักงานเป็นผู้ทำและใช้เวลามาก อีกทั้งยังมีข้อผิดพลาดระหว่างทางเกิดขึ้น โดยมีการตั้งเงื่อนไขให้โรบอทแจ้งพนักงานให้ทราบเพื่อเข้ามาช่วยในกรณีที่เกิดปัญหา

รูปแบบการทำงานร่วมกันระหว่างโรบอทกับคนแบบที่ 3 เรียกว่า “human in the loop” ซึ่งเป็นการกำหนดเงื่อนไขที่ค่อนข้างซับซ้อนแต่จำเป็นเพื่อให้คนเข้ามาเป็นผู้ตัดสินใจเพื่อให้การทำงานสามารถคืบหน้าต่อไปได้

รูป flow การทำงานด้านล่างแสดงขั้นตอนของกระบวนการทำงานที่เราคุ้นเคยกันดีคือ invoice processing ซี่งถึงแม้จะมีการนำเทคโนโลยี OCR เข้ามาเป็นใช้อ่านข้อมูลจาก non-digital document ให้เป็น digital แล้วก็ยังต้องให้คนเข้ามาช่วยตรวจสอบความถูกต้องของค่าที่อ่านได้ ซึ่งขึ้นอยู่กับหลายปัจจัยด้วยกัน

เราเรียกรูปแบบถัดมาหรือรูปแบบที่ 4 ว่า “attended in tandem” หรือการทำงานคู่ขนานกันไปทั้งโรบอทและคน กรณีที่ชัดเจนของรูปแบบนี้คือการทำงานของเจ้าหน้าที่ call center ซึ่งในอดีตนั้น เจ้าหน้าที่ call center ที่กำลังพูดสายกับลูกค้าอยู่ต้องผละจากการสนทนาไปค้นหาข้อมูลเพื่อกลับมาชี้แจงหรือแก้ปัญหาให้ลูกค้า ทำให้ใช้เวลานานต่อการให้บริการลูกค้าแต่ละราย 

แต่จากตัวอย่าง flow การทำงานด้านบน เจ้าหน้าที่สามารถสนทนากับลูกค้าได้อย่างต่อเนื่องพร้อมกับออกคำสั่งให้โรบอท attended สืบค้นข้อมูลในระบบต่างๆที่เกี่ยวกับการให้บริการลูกค้า ทำให้กระบวนการทำงานโดยรวมมีประสิทธิภาพเพิ่มขึ้นมาก นอกจาก call center แล้ว การทำงานระหว่างคนกับโรบอท attended ยังสามารถแยกย่อยออกไปได้อีกหลายแบบ เช่นแบบ event-driven ที่โรบอทสามารถเริ่มทำรายงานค่าใช้จ่ายทันที่ที่เราอัพเดทข้อมูลในระบบบัญชีแล้วเสร็จเป็นต้น

ตัวอย่างอีกลักษณะหนึ่งเรียกว่าแบบ “hybrid” ที่ได้เกริ่นไว้ช่วงแรกว่า เป็นการนำโรบอททั้งแบบ attended และ unattended เข้ามาทำงานร่วมกัน เช่น พนักงานขายเป็นผู้เริ่มสั่งให้โรบอท attended รวบรวมข้อมูลเบื้องต้นที่จำเป็น จากนั้นโรบอท attended ก็ส่งงานต่อให้โรบอท unattended ทำงานส่วนต่อไปที่ต้องมีการขอข้อมูลจากหลายแหล่งเพื่อใช้เตรียมเป็นรายงานสรุปยอดขายให้ผู้บริหาร

การที่เราทำความเข้าใจกับรูปแบบต่างๆของการทำงานระหว่างโรบอทกับคนจะช่วยให้เราสามารถประเมินความคุ้มค่าและวางแผนการลงทุนได้ดีขึ้น โดยเลือกชนิดของโรบอทที่เหมาะสมกับประเภทของงาน และยังสามารถสร้างความคาดหวังที่ถูกต้องกับผู้ใช้งานได้ เช่นงานบางอย่างสามารถทิ้งไว้ให้โรบอท unattended ทำงานตอนกลางคืนได้ แต่ถ้าเราเลือกใช้เฉพาะโรบอท attended อย่างเดียว งาน back office ที่มีปริมาณมากก็ยังต้องรอให้คนเข้ามาสั่งงานทุกครั้ง ทำให้ผลลัพท์เหมือนไม่ได้ช่วยประหยัดเวลาการทำงานได้มากพอ (ซึ่งถ้าเลือกใช้โรบอท unattended ตั้งแต่แรก อาจแสดงผลลัพท์หรือ ROI ที่น่าประทับใจกว่า)

การทำงานร่วมกันระหว่างคนกับโรบอทพิสูจน์ความจริงได้ข้อนึงครับว่า อย่างไรเสียคนก็จะไม่ถูกแทนที่ด้วยโรบอทอย่างที่หลายคนกังวล จริงอยู่เรามีลักษณะการทำงานแบบ fully automated ที่โรบอททำเองได้หมดตั้งแต่ต้นจนจบ แต่เราก็เห็นตัวอย่างหรือ use case อีกจำนวนมากที่แสดงให้เห็นถึงวิธีการที่คนกับโรบอททำงานร่วมกันโดยใช้จุดเด่นของแต่ละฝ่ายเพื่อให้เกิดผลดีที่สุดต่อกระบวนการทำงานนั้นๆ

เมื่อปี 2020 มีบทวิเคราะห์ของ IDC ที่ตีพิมพ์ผลสำรวจของงานที่พนักงานออฟฟิศใช้เวลามากและอยากให้โรบอทเข้ามาช่วยทำงาน เช่น การเข้าหน้าจอและส่งข้อมูลผ่านหลายแอปพลิเคชั่น (42%), การจัดการงานเอกสารและธุรการ (32%), การเตรียมข้อมูลเพื่อการวิเคราะห์ (30%) โดยกว่า 70% ของพนักงานที่สำรวจพร้อมที่จะเปิดรับและเรียนรู้การทำงานร่วมกับโรบอท โดยยังมีพนักงานบางส่วนที่กังวลว่างานของตนเองจะหายไปหรือขนาดของทีมงานจะลดลงจากการเข้ามาของโรบอท

อีกเรื่องหนึ่งที่อยากพูดถึงคือรอยต่อระหว่างการทำงานของคนกับโรบอทซึ่งเป็นตัวกำหนดความ smooth ของการทำงานร่วมกันว่าดีแค่ไหน ซึ่งสำหรับประเด็นนี้ เจ้าของผลิตภัณฑ์หรือ software vendor ชั้นนำจะมีการนำเทคโนโลยี low-code เข้ามาใช้เพื่อสร้างฟอร์มหรือแอปพลิเคชั่นที่ใช้เป็นหน้าจอการทำงานร่วมกันเวลาส่งต่องาน (hand off) ระหว่างคนและโรบอทได้อย่างรวดเร็วสอดคล้องกับเวลาเฉลี่ยในการพัฒนาระบบ RPA

เราลองนึกภาพตามครับ ถ้าเราพัฒนาระบบ RPA แต่ละส่วนเสร็จแล้วแต่ยังต้องรอการเขียนหน้าจอเพื่อการทำงานร่วมกันซึ่งต้องมีการต่อเชื่อมหรือการทดสอบระบบ หรือถ้าไม่มีหน้าจออะไรเลยก็ต้องติดตามการทำงานด้วย excel และ email notification ซึ่งมีประสิทธิภาพน้อยกว่า

เรื่องนี้ถ้ามีโอกาสทางเราจะนำมาเขียนเป็นบทความอีกครั้งครับ

Sources:

  1. IDC Robot for Every Worker Survey 2020
  2. UiPath Inc

10 คำทำนายแนวโน้มระบบ RPA ในปี 2022 #1

ในปัจจุบันภาคธุรกิจเร่งนำเอาระบบ automation มาใช้ในอย่างมากในแทบทุกอุตสาหกรรม มีทั้งหมดแบ่งเป็น 10 แนวโน้มที่จะมีผลต่อการทำงานในคุณในอนาคตอันใกล้นี้ โดยในบทความนี้จะเล่าถึง 3 แนวโน้มแรกในบทความนะครับ

Trend #1: ซีไอโอจะเป็นคนกุมบังเหียนหลักของระบบอัตโนมัติ 

จากงานวิจัยของ Mckinsey บ่งบอกถึงมากกว่า 80% ที่องค์กรเพิ่มการใช้งานระบบ automation ไปมากกว่าความเป็น basic implement แต่เป็นการยกระดับไปถึงมาตรฐานของการใช้ระบบ RPA การเชื่อมโยงไปกับกลยุทธขององค์กร ต่อยอดไปถึงการใช้ RPA ในแง่ของการ คำถามที่ CIO โดนถามจะถูกปรับเปลี่ยนจากมันคืออะไร ทำงานทดแทนแรงงานมนุษย์ได้มากน้อยแค่ไหน ไปเป็นคำถามอาทิเช่น

  • การเชื่อมโยงกลยุทธหลักขององค์กรเข้ากับระบบ automation การมองหามาตรฐานการควบคุม ดูแลระบบให้มีมาตรฐานเพื่อความมั่นคงของระบบ กำกับดูแลกระบวนการทางธุรกิจโดยใช้ robots ให้มีประสิทธิภาพสูงสุด
  • ปรับการใช้งาน RPA ให้มาเป็นการทำงานด่านหน้าเพื่อสนับสนุนโมเดลการทำธุรกิจใหม่ๆ ไม่ใช่เป็นเพียง back office แบบเดิมอาทิเช่น chat bots, robot for call center หรือ customer self service เป็นต้น
  • สมดุลการใช้ automation ระหว่างการสร้าง หรือใช้งานจากตรงกลาง หรือการสร้าง robots ขึ้นใช้งานได้เองในแต่ละหน่วยงาน
  • สร้างการกำกับดูแลระบบให้เชื่อมกับบรรษัทภิบาลขององค์ในแง่มุมต่างๆ
Businessman holding a glass ball,foretelling the future.

Trend #2: การควบรวมเป็นหนึ่งเดียวของระบบ RPA ทั้ง BPA, iPaas, LCAP และ AI

แนวคิด “RPA-plus” ในที่นี้หมายถึงการควบรวมเอาความสามารถของ BPA (business process automation)+ LCAPs (low-code application platforms)+AI+ iPaaS (interation platforms as a service) เข้าไว้ด้วยกัน ทั้งนี้เนื่องด้วยผู้นำการควบรวมจากทาง RPA vendor มีการปรับใช้งาน การเข้าถึงได้อย่างรวดเร็วมากว่า platform ที่กล่าวข้างต้นอื่นๆ ทั้งหมด โดยในปี 2020 RPA เติบโตจากยอดรายได้ถึงเกือบ 1.9 ล้านล้านดอลล่าร์ และมีโอกาสเติบโตออกไปอีกในอนาคต และเกิดการเติมเต็มความสามารถเข้าไปในระบบ RPA เพื่อเติมในเรื่อง “democratization” และ “scalability” ให้เต็มความสามารถนั่นเอง

โดยมีข้อสังเกตุที่ชัดเจนในสองรูปแบบที่เกิดขึ้นในตลาด convergence RPA คือ

  • การเพิ่มความสามารถในการสร้าง robot ที่เข้ากันได้กับ เชื่อมต่อได้ง่ายกับระบบปัจจุบันขององค์กร การต้องให้ robot ทำงานกับกระบวนการที่ซับซ้อนมากขึ้นได้นั้น ระบบ RPA ที่ดีต้องมีการสร้าง UI (user interface) ที่เข้ากันได้กับ RPA ด้วยเทคโนโลยี low-code เป็นต้น หรืออีกตัวอย่างคือ RPA ที่มีเครื่องมือในการสร้าง robot ได้ด้วยผู้ใช้งานเอง สร้างapplication สั้นๆง่ายๆในการรองรับการทำงาน robot เป็นต้น
  • ผู้เล่นในตลาด RPA จะเริ่มสร้างเครือข่ายหรือลงทุนกับการ “เชื่อมต่อ” ให้ดีและง่ายขึ้นไปอีก (ผ่าน API) การทำ plug in ต่างๆ กับ application ที่มีผู้ใช้ในตลาดจำนวนมาก และการมองถึงการเป็น RPA ที่มีหน้าที่จัดการบริหาร robot และกำหนดควบคุมการใช้งาน (governance) ภายใต้ระเบียบข้อบังคับ การดูแลระบบรักษาความปลอดภัย การทำงานของ robot ให้ดียิ่งขึ้น นี่เป็นที่มาของคำว่า RPA-plus

Trend #3: การก่อกำเนิด layer ใหม่ของ RPA (automation layer)

เป็นการมองอนาคตถึงแนวคิดที่ว่าองค์กรยุคใหม่จะมีการนำเอาหลักคิด “robot for every person” เฉกเช่นการให้พนักงานทุกคนมีอีเมลเป็นของตนเองเพื่อเอาไว้สื่อสารเป็นต้น แต่แนวคิดนี้คือให้พนักงาน (ทุกคน) มี digital desktop assistant มาทำงานเชื่อมต่อกับกระบวนการขององค์กรที่ส่วนมากมีหลากหลาย enterprise systems, web application หรือระบบเก่าๆอย่าง legacy systems ที่ไม่ค่อยมี api ในการเชื่อมต่อมากนัก

การเชื่อมด้วย RPA ที่ทำได้อย่างรวดเร็วนี้จะก่อให้เกิดรูปแบบ “ชั้น” ใหม่ขึ้นเรียกว่า automation layer ที่จะเป็น stacks บนสุดของapplication stacks ซึ่งใน “ชั้น” หรือ layer ใหม่นี้จะอยู่ระหว่างผู้ใช้งาน และระบบ enterprise ต่างๆ โดยมีเครื่องมือสำหรับสร้าง robot มาช่วยนำเข้าข้อมูล เปิดปิดระบบ พิมพ์รายงาน มี plugin การเชื่อมต่อต่างๆ เก็บเอาไว้และระบบที่ทำหน้าที่ maintenance และ governance อีกด้วย

สุดท้ายด้วย layer ใหม่นี้จะทำการเกิดแนวคิดในการทำ digital process ได้ง่าย รวดเร็วและมีมาตราฐานเพื่ออำนวยให้ผู้ใช้งานสร้าง digital robot เพื่อ rethink กระบวนงานใหม่ๆที่สร้างสรรค์ และพ้นขีดจำกัดจาก technology fragmentation (การมีระบบที่แตกต่าง หลากหลายและเชื่อมต่อได้ยากเย็น) ได้ในที่สุด   

Source:

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-top-trends-in-tech

https://www.uipath.com/blog/automation/top-automation-trends-2022

ระบบอัตโนมัติกับ รูปแบบการทำงานใหม่ (Hybrid Work)

สถานการณ์โควิดเป็นทั้งแรงผลักและแรงดัน รวมไปถึงขับเคลื่อนอย่างรวดเร็วสู่การทำงานแบบรีโมท (ทำงานจากระยะไกล เช่นจากที่บ้าน) แต่ไม่ใช่ทุกคนจะหลงรักการทำงานในรูปแบบนี้เพราะหลายๆงานมันยากมากขึ้น ใช้เวลามากขึ้นกว่าจะเช็คกว่าจะเคลียร์ความเข้าใจกับเพื่อนร่วมงานและนำข้อมูลเข้าประมวลผล เป็นผลให้งานวิจัยมากมายอย่างของ Saleforce research บอกเลยว่า 64% อยากกลับเข้าทำงานในออฟฟิศ (ในรูปแบบเดิม) เป็นที่มาของแรงบีบให้ผู้บริหารต้องปิดตา เปิดหู รับฟังมากขึ้นและต้องจัดเตรียมทรัพยากรในการรองรับการทำงานในรูปแบบใหม่ “Hybrid working” ให้ดีที่สุดดังตัวอย่างจากประเทศสหรัฐอเมริกาเรื่องการลงทุนด้านไอทีดังนี้

  • เครื่องมือสำหรับพนักงานในการประชุม online (72%)
  • ระบบรักษาความปลอดภัยในการเชื่อมต่อต่างๆ (70%)
  • การฝึกอบรมสู่พนักงานในการประชุม ทำงานรูปแบบ online (64%)
  • ปรับห้องประชุมเพื่อรองรับการทำ virtual connectivity มากขึ้น (อุปกรณ่ต่างๆในห้องประชุม การถ่ายทอดสด และอื่นๆ)(54%)

อนาคตอันใกล้คำว่า “Hybrid work” จะเป็นสิ่งที่ทุกคนคุ้นเคยอย่างแน่นอนเนื่องด้วยปัจจัยที่กล่าวไปข้างต้น โจทย์จึงมาอยู่ที่ผู้บริหารต้องวางแผนการทำงานในรูปแบบนี้ให้มีประสิทธิภาพมากที่สุด ทั้งนี้ไม่ใช่คิดแค่ desktop PC สำหรับโต้ะพนักงาน และ notebook สำหรับแจกเพื่อให้ทำงานจากที่บ้านแค่นั้น แต่ต้องรวมไปถึงการคิดนอกกรอบอื่นๆเพิ่มขึ้นไปด้วยเช่นการวางแผนงบประมาณ การสนับสนุนการทำงานในรูปแบบใหม่ซึ่งต้องพิจารณารูปแบบว่า technology ที่องค์กรใช้อยู่ในปัจจุบันรองรับทั้งหมดหรือไม่ซึ่งพระเอก ณ ตอนนี้น่าจะเป็นระบบ cloud infra รวมไปถึงบริการ managed service ทั้งหลายที่จะมาช่วยองค์กร (การลงทุนใน hardware, software จะหดหายไปบ้าง) ระบบรักษาความปลอดภัยเองก็จำเป็นต้องถูกอัพเกรดให้แข็งแกร่งมากขึ้นไปตามสถานการณ์

employee work outside from the office

และแน่นอนพระเอกคนสำคัญที่จะมาช่วยให้การทำงานในแบบ Hybrid Work รวดเร็วขึ้น ผิดพลาดน้อยลง ไม่เปลี่ยนแปลงแนวปฎิบัติมากมายนักคงเป็นระบบ automation อย่างที่สถาบันวิจัย Forrest research กล่าวไว้ว่า “เมื่อสถานการณ์โรคระบาดคลี่คลายลงไป องค์กรจะถูกปรับโครงสร้างอย่างรุนแรงด้วยความจริงที่ว่าพนักงานสามารถทำงานได้จากนอกออฟฟิศ ระบบอัตโนมัติจะเข้ามาปรับทรัพยากรที่ไร้คุณค่า จัดกระบวนการทำงานใหม่ให้องค์กรพร้อมสำหรับโลกธุรกิจใหม่”

ความจริงนี้ถูกส่งผ่านการลงทุน การ implement ระบบ RPA ในองค์กรใหญ่ๆมากมายโดยมีมากกว่า 56% ที่ใช้ระบบนี้อยู่ (และจะพัฒนาต่อไป) อีก 17% วางแผนจะใช้งานในปีหน้า และ 8% วางแผนจะใช้ในอีกสองปี นั่นหมายถึงการ shift to hybrid work model เกือบจะทั้งหมด … ลองคิดดูหากท่านยังไม่ได้พิจารณาในเรื่องราวเหล่านี้ในองค์กรของท่านจะถูกทิ้งห่างไปไกลขนาดไหน

ดังนั้นมาเรียนรู้เพื่อให้เข้าใจเทคโนโลยี ที่จะเป็นตัวยกระดับการทำงานขององค์กรของคุณกันเถอะ…

robotic process automation concept

credit:

https://www.uipath.com/blog/digital-transformation/hybrid-work-model-needs-new-tech-stack

ระบบอัตโนมัติสำหรับทุกคนในองค์กร “A Robot For Every Person” กุญแจสู่ความสำเร็จของ Digital Transformation

ในทุกวันนี้หลายๆองค์กรทำโครงการ Digital Transformation ไปในหลากหลายในทุกวันนี้หลายองค์กรทำโครงการ Digital Transformation ไปในหลากหลายทิศทาง บทความวันนี้จะแชร์ในอีกหนึ่งมุมมองโดยเน้นที่ “ทรัพยากรบุคคล” ที่น่าจะสำคัญมากที่สุดสำหรับองค์กรที่จะช่วยขับเคลื่อนองค์กรไปในทิศทางที่ท้าทายมากๆ จะดีกว่านี้หรือไม่หากเราขับเคลื่อนกระบวนการนวัตกรรมผ่าน “ความเห็นชอบ” โดยให้เครื่องมือที่ไปช่วยลดการทำงานซ้ำๆ ปริมาณมาก ให้พนักงานไปทำงานที่ใช้ความคิดสร้างสรรค์ การตัดสินใจยากๆแทน และให้โอกาสกับพนักงานด่านหน้า ที่เค้า “เห็น” ปัญหาที่ชัดเจนกว่าเป็นองค์ประกอบสำคัญที่ขับเคลื่อนโครงการสู่ความสำเร็จ

ในทุกวันนี้หลายๆองค์กรทำโครงการ Digital Transformation ไปในหลากหลายในทุกวันนี้หลายองค์กรทำโครงการ Digital Transformation ไปในหลากหลายทิศทาง บทความวันนี้จะแชร์ในอีกหนึ่งมุมมองโดยเน้นที่ “ทรัพยากรบุคคล” ที่น่าจะสำคัญมากที่สุดสำหรับองค์กรที่จะช่วยขับเคลื่อนองค์กรไปในทิศทางที่ท้าทายมากๆ จะดีกว่านี้หรือไม่หากเราขับเคลื่อนกระบวนการนวัตกรรมผ่าน “ความเห็นชอบ” โดยให้เครื่องมือที่ไปช่วยลดการทำงานซ้ำๆ ปริมาณมาก ให้พนักงานไปทำงานที่ใช้ความคิดสร้างสรรค์ การตัดสินใจยากๆแทน และให้โอกาสกับพนักงานด่านหน้า ที่เค้า “เห็น” ปัญหาที่ชัดเจนกว่าเป็นองค์ประกอบสำคัญที่ขับเคลื่อนโครงการสู่ความสำเร็จ

ไม่แปลกเมื่อโดยปกติการนำโครงการจะเป็นในลักษณะบน-ล่าง โดยผู้บริหารโครงการจะอาจจะเป็น CIO หรือทีมงานบริหารโครงการที่มักจะมองไปในบนกว้างโดยเริ่มจากระบบ (systems) หรือกระบวนการ (workflows) ซึ่งเรามักจะพบระบบในกระบวนการต่างๆที่ไม่ต่อเชื่อมและทำให้เกิดความซับซ้อนในการแก้ไข ทำให้การพัฒนาล่าช้าและต้องใช้เทคโนโลยีใหม่ๆในการจัดการ ซึ่งก็ตามมาด้วยต้นทุนที่สูงและใช้ระยะเวลานาน แต่เมื่อลองมา “คิดแบบกลับหัว” Bottom-up เราจะเห็นได้ว่าพนักงานด่านหน้าจะใกล้ชิดและ “รู้ปัญหา” ดีกว่า เค้ารู้ว่างานไหนสำคัญ งานไหนต้องทำบ่อยแค่ไหนดีกว่าทีมงานโครงการ ถ้าองค์กรให้เครื่องมือพร้อมความรู้ในการจัดการได้ พนักงานจะให้ความร่วมมือเป็นอย่างดีเพราะเครื่องมือที่เราให้เขานั้น “ตอบโจทย์” กับแผนกหรือตัวเขาโดยตรง และระบบจะถูกปรับเป็นดิจิตอลโดยอัตโนมัติเพราะเขาจะเป็นผู้โหวต ผู้เห็นชอบและให้ความร่วมมือกับการปรับเปลี่ยนกระบวนการเป็นระบบอัตโนมัติ (robots) เอง หรือแม้กระทั่งเป็นผู้สร้าง ผู้ดูแลและใช้งานเองด้วย เมื่อทุกคนในทีมร่วมใจ ไร้แรงต่อต้านและใช้เครื่องมือที่ง่ายก็จะทำให้การปรับกระบวนการจาก manual process – digital process ผ่านการทำ automation เป็นได้ดั่งที่วางแผนกันเอาไว้

Fully Automation from UiPath RPA

ทั้งนี้ IDC ได้มีบทวิจัยที่พูดถึงความพึงพอใจถึง 71% เมื่อมีเครื่องมือ (robots) มาช่วยพนักงานที่อยู่ด่านหน้า เราจะได้ปริมาณพร้อมจำนวนคุณภาพของ robots ที่จะมาช่วยงานกระบวนที่ต้องทำบ่อยๆได้โดยอัตโนมัติ โดยอาจจะแบ่งวิธีการทำงานร่วมกันระหว่าน คน vs หุ่นยนต์ (robots) ได้หลากหลายแนวทางดังนี้

  1. การแบ่งเบาภาระงานให้กับ robots ไปทำแทน (คนสั่งให้ robots ไปทำแทนเลย)
  2. การพูดคุยและประสานงานกับ robots (robots ทำแล้วมาถามหากเจอเงื่อนไขต่างๆว่าต้องทำอะไรต่อ)
  3. ทำงานควบคู่กันไป ไม่รบกวนซึ่งกันและกัน (ต่างฝ่ายต่างทำงานประสานกัน ในเวลาเดียวกันได้)
  4. เชื่อมต่อระหว่างคนและ robots ด้วย web application หรือ mobile เป็นต้น (ไร้รอยต่อ)

สู่ยุคของ “Democratize Innovation” การฟังเสียงส่วนมากเพื่อการพัฒนานวัตกรรม โดยหลักคิดคือองค์กรให้ความรู้เรื่องระบบอัตโนมัติ องค์ความรู้ในเครื่องมือทางเทคนิคที่เหมาะสมกับพนักงานในแผนกต่างๆ และให้ทุกคนมี “สิทธิ์” ในการออกไอเดียในการเลือกพัฒนา robots สำหรับกระบวนการต่างๆ สิทธิ์ในการใช้เครื่องมือเหล่านี้ก็เพื่อตอบโจทย์งานในปัจจุบันของเขานั่นเอง โดยเราแบ่งเครื่องมือนี้ออกเป็นสองรูปแบบ (ยกตัวอย่างจาก RPA platform – UiPath) เพื่อให้องค์กรขับเคลื่อนไปสู่การเป็น Fully automated enterprise อีกทั้งยังคำนึงถึงการควบคุมนโยบายองค์กรที่ถูกต้องและรัดกุมอีกด้วย

  • การให้ช่องทางในการออกไอเดีย ระดมความคิด และการให้เครื่องมือที่ง่ายในการพัฒนา robots ขึ้นมาจากตัวพนักงานด่านหน้าเอง  – UiPath StudioX, Automation Hub
  • การใช้เครื่องมือที่ช่วยให้การเข้าถึง robots ง่ายขึ้นไปอีก เช่นเข้าถึง สั่งงาน ติดตาม robots ผ่านทาง Mac, Mobile หรือ web application เป็นต้น – UiPath Assistant, UiPath App 

หมายเหตุ – การขยายการใช้งาน robots โดยไม่ลืมแนวคิดของ Governance (นโยบาย ความปลอดภัยและความถูกต้อง) – UiPath Orchestrator

UiPath Product Platform 2021

สรุป บทความนี้จะเน้นไปถึงแนวคิดใหม่ที่องค์กรในยุคนี้ต้องคำนึงถึง หากอยากจะประสบความสำเร็จในการทำ Digital Transformations และการปรับปรับระบบในปัจจุบันให้เป็นระบบอัตโนมัติและปรับให้เป็นดิจิตอล โดยการใช้เครื่องมือที่ง่ายและได้รับการยอดรับจากพนักงานทุกฝ่าย ทุกแผนก เพราะเป็นเครื่องมือที่จะช่วยให้พวกเขา “โหวต” หรือ “สร้าง” หรือ “กำหนด” ได้ด้วยตนเอง โดยทุกอย่างจะอยู่ในความควบคุมในด้านนโยบายความถูกต้องและปลอดภัย ซึ่งไม่แน่ว่าในอนาคตอันใกล้ ทุกคนในองค์กรจะสามารถใช้งาน สร้าง robots ได้เหมือนทุกวันนี้ที่ในทุกองค์กรจะให้ อีเมลแอคเค้าน์ พื้นที่จัดเก็บ หรือระบบ office ใช้กันทุกคน

อ้างอิงจาก

Gartner predicts (https://www.gartner.com/en/newsroom/press-releases/2020-09-21-gartner-says-worldwide-robotic-process-automation-software-revenue-to-reach-nearly-2-billion-in-2021)

A_Robot_for_Eevery_Person_White_Paper (https://www.uipath.com/rpa/robot-every-person)