3.รายละเอียด แยกตาม module ใหม่ๆของ UiPath ในยุคต่อไป ที่เป็นการดึงเอาศักยภาพของ ปัญญาประดิษฐ์เข้ามามีส่วนและแบ่งแยก AI ออกเป็นสองส่วนคือ Specialized AI และ GenAI
4.แผนการออกบริการและผลิตภัณฑ์ใหม่ๆ การสนับสนุน (Platform Road Map) และการมองอนาคตของการเอา automation & ai มาใช้อย่างเห็นผล
ในเนื้อหาตอนแรกนี้ แอดมินของเล่าจากการฟังอย่างรวดเร็ว (เขียน blog นี้โดยฟังและจับเอาจากการนั่งฟัง live และจดสรุปใจความสำคัญออกมาได้ดังนี้ (key note session)
เปิดตัว UiPath AutoPilot ที่มีความเก่งในแต่ละด้านอาทิ สร้าง process flow program ได้ด้วย prompt หรือแม้กระทั่งสร้าง UiPath App (low-code) ด้วยการส่ง PDF ภาพตัวอย่างที่เราออกแบบมาคร่าวๆได้เลย ยังมีรายละเอียดที่จะเขียนต่อไปในบทความตอน div deep ต่อไปครับ
เป็นต้นโดยเรียกคุณลักษณะเหล่านี้ว่าเกณฑ์การพิจารณา ส่วนผลลัพธ์ของการทำงานส่วนนี้จะเป็น Process List ที่ผู้ใช้งานหรือสมาชิกโครงการระดมความคิดออกมาว่า กระบวนการทำงานไหนบ้างที่สมควรถูกเลือกขึ้นมาศึกษาในเชิงลึกว่ามีความเหมาะสม คุ้มค่ากับการพัฒนาให้เป็นระบบทำงานอัตโนมัติบ้าง
ในการทำ workshop ของขั้นตอน Process Discovery เราอาจใช้วิธีแบ่งกลุ่มผู้ใช้งานออกเป็นกลุ่มต่างๆ ที่ค่อนข้างมีความเข้าใจการทำงานในปัจจุบันของแต่ละคน และเลือก process ที่เห็นร่วมกันออกมาชุดหนึ่งเพื่อหารือกันในที่ประชุมรวม
ผู้ใช้งานจะต้องพยายามคิดว่างานของตนยังมีสิ่งใดที่เป็นปัญหาหรือสามารถทำให้ได้ดีกว่าที่เป็นอยู่ หากไม่แน่ใจก็สามารถซักถามเพื่อนร่วมกลุ่มหรือวิทยากรที่มีหน้าที่ให้คำปรึกษา เพื่อที่ว่าสุดท้ายกลุ่มของตนจะสามารถได้ Process List ที่มั่นใจได้ว่าสามารถช่วยปรับปรุงการทำงานของเราให้ดีขึ้นได้
อย่างไรก็ตามแม้การทำ workshop ในขั้นตอน Process Discovery นี้จะดูมีขั้นมีตอน มีเกณฑ์การคัดเลือก Process List ที่ค่อนข้างชัดเจนและสามารถคำนวนเป็นตัววัดเชิงปริมาณอย่างคะแนนที่จะช่วยให้เราจัดกลุ่ม process เหล่านี้ได้ เรายังมีข้อสังเกตบางประการจากการสังเกตกิจกรรมที่เกิดขึ้นใน workshop ซึ่งอาจทำให้เราไม่ได้ Process List ที่ดีที่สุดสำหรับการวางแผนโครงการ RPA ในระยะถัดไป คือ
การขาดบุคคลากรที่มีความเข้าใจจริงในกระบวนการทำงานที่กำลังประเมินอยู่ ในกรณีที่ผู้ใช้งานที่ลงมือทำเองหรือมีความเข้าใจในขั้นตอนและปัญหาการทำงานจริงๆไม่ได้อยู่ร่วมใน workshop ซึ่งทำให้ Process List ที่ทำออกมาไม่ได้แสดงถึงกลุ่มงานที่เหมาะสมที่สุดที่จะพัฒนาให้เป็นระบบ RPA
การขาดข้อมูลที่จำเป็นสำหรับการตัดสินกระบวนการทำงานที่กำลังประเมินอยู่ เวลาเราพูดถึงประโยชน์ที่คาดหวังจากการเพิ่มประสิทธิภาพการทำงานหรือความซับซ้อนของการทำงานที่เรากำลังเผชิญอยู่ เราควรมีวิธีที่จะเก็บค่าสถิติของการทำงานนี้ให้ได้อย่างครบถ้วนและใกล้เคียงความจริงให้ได้มากที่สุด เช่น ขั้นตอนและเงื่อนไขการทำงานที่เราทำอยู่ เวลาที่ใช้อยู่ เวลาที่คาดการณ์ว่าจะลดลงเมื่อมีระบบ RPA มาใช้เป็นต้น ถ้าสมมุติฐานหรือค่าสถิติเหล่านี้คลาดเคลื่อนจากความจริงไปมาก เราจะได้ Process List ที่ไม่เหมาะสมและจะส่งผลต่อความสำเร็จและการยอมรับของโครงการ RPA
การได้ Process List จากการทำ workshop เป็นเพียงผลลัพท์แรกเท่านั้น process ต่างๆที่คิดได้ยังต้องผ่านการพิจารณาในรายละเอียดและจัดทำเป็น business case ที่มีข้อมูลสนับสนุนในเชิง costs & benefits ที่เพียงพออีก เพื่อให้ผู้มีอำนาจตัดสินใจอนุมัติและรวบรวมเข้าไปในแผนการพัฒนาโครงการต่อไป
ผู้ใช้งานที่เป็นมนุษย์จะแก้ไขข้อมูลที่โรบอท extract ออกมาทางด้านซ้ายหรือยืนยันความถูกต้องผ่าน checkbox (ถ้าข้อมูลที่อ่านมาถูกต้องตามเอกสารด้านขวามือ) ในกรณีที่เลือกใช้ ML model extractor เราสามารถกำหนดให้ข้อมูลที่ได้รับการแก้ไขหรือยืนยันแล้วกลับไป train model เพิ่มเติมได้
ในตอนถัดไปซึ่งจะเป็นตอนที่ 3 ของซีรี่การสอนโรบอทให้เข้าใจเอกสาร เราจะไปดูเรื่องการสอนหรือ train โรบอทจริงๆเพื่อให้ได้ ML model extractor ว่ามีขั้นตอนอย่างไรและมี model ไหนที่ได้รับการสอนหรือ pre-trained ไว้แล้ว สามารถหยิบมาใช้ได้เลยครับ
รูปแบบการทำงานร่วมกันระหว่างโรบอทกับคนแบบที่ 3 เรียกว่า “human in the loop” ซึ่งเป็นการกำหนดเงื่อนไขที่ค่อนข้างซับซ้อนแต่จำเป็นเพื่อให้คนเข้ามาเป็นผู้ตัดสินใจเพื่อให้การทำงานสามารถคืบหน้าต่อไปได้
การที่เราทำความเข้าใจกับรูปแบบต่างๆของการทำงานระหว่างโรบอทกับคนจะช่วยให้เราสามารถประเมินความคุ้มค่าและวางแผนการลงทุนได้ดีขึ้น โดยเลือกชนิดของโรบอทที่เหมาะสมกับประเภทของงาน และยังสามารถสร้างความคาดหวังที่ถูกต้องกับผู้ใช้งานได้ เช่นงานบางอย่างสามารถทิ้งไว้ให้โรบอท unattended ทำงานตอนกลางคืนได้ แต่ถ้าเราเลือกใช้เฉพาะโรบอท attended อย่างเดียว งาน back office ที่มีปริมาณมากก็ยังต้องรอให้คนเข้ามาสั่งงานทุกครั้ง ทำให้ผลลัพท์เหมือนไม่ได้ช่วยประหยัดเวลาการทำงานได้มากพอ (ซึ่งถ้าเลือกใช้โรบอท unattended ตั้งแต่แรก อาจแสดงผลลัพท์หรือ ROI ที่น่าประทับใจกว่า)
การทำงานร่วมกันระหว่างคนกับโรบอทพิสูจน์ความจริงได้ข้อนึงครับว่า อย่างไรเสียคนก็จะไม่ถูกแทนที่ด้วยโรบอทอย่างที่หลายคนกังวล จริงอยู่เรามีลักษณะการทำงานแบบ fully automated ที่โรบอททำเองได้หมดตั้งแต่ต้นจนจบ แต่เราก็เห็นตัวอย่างหรือ use case อีกจำนวนมากที่แสดงให้เห็นถึงวิธีการที่คนกับโรบอททำงานร่วมกันโดยใช้จุดเด่นของแต่ละฝ่ายเพื่อให้เกิดผลดีที่สุดต่อกระบวนการทำงานนั้นๆ
ปรับการใช้งาน RPA ให้มาเป็นการทำงานด่านหน้าเพื่อสนับสนุนโมเดลการทำธุรกิจใหม่ๆ ไม่ใช่เป็นเพียง back office แบบเดิมอาทิเช่น chat bots, robot for call center หรือ customer self service เป็นต้น
เป็นการมองอนาคตถึงแนวคิดที่ว่าองค์กรยุคใหม่จะมีการนำเอาหลักคิด “robot for every person” เฉกเช่นการให้พนักงานทุกคนมีอีเมลเป็นของตนเองเพื่อเอาไว้สื่อสารเป็นต้น แต่แนวคิดนี้คือให้พนักงาน (ทุกคน) มี digital desktop assistant มาทำงานเชื่อมต่อกับกระบวนการขององค์กรที่ส่วนมากมีหลากหลาย enterprise systems, web application หรือระบบเก่าๆอย่าง legacy systems ที่ไม่ค่อยมี api ในการเชื่อมต่อมากนัก