Gartner, Magic Quadrant for Robotic Process Automation, by Saikat Ray, Arthur Villa, Melanie Alexander, Keith Guttridge, Andy Wang, Paul Vincent , 25 July, 2022.
Series ในตอนของ use case ที่น่าสนใจการนำเอา RPA ไปประยุกต์ใช้ในการจัดการธุรกิจ logistics ตอนที่ 3 โดยแชร์ถึงแนวคิดก่อนการปรับใช้เทคโนโลยี RPA ไปถึงการทำ quick-win ด้วย pilot process ที่ประสบความสำเร็จ ไปจนถึงอนาคตที่จะเลือกเอา Ai + OCR มาใช้ต่อไป มาติดตามกันครับ
ผู้เขียนเพิ่งได้มีโอกาสเข้ารับฟัง webinar session ที่จัดโดย UiPath ในงาน AI Summit 2022 ซึ่งจัดขึ้นทุกปีโดยปีนี้เป็นแบบ online มี session น่าสนใจมากมายซึ่งหนึ่งในนั้นเป็น break out session by industry แยกเฉพาะธุรกิจกันไปเลยว่าแต่ละภาคนั้นใช้ AI มาผลักดันให้ RPA ทำงานได้ดีมากขึ้นแค่ไหน use case ดี ๆ และแน่นอนบทเรียน ประสบการณ์ก่อน หลังการใช้ AI ได้ถูกแบ่งปันผ่านมาด้วย วันนี้เลยขอเอามาสรุปสั้น ๆ เพื่อเป็นประโยชน์กับผู้อ่านในภาคอุตสาหกรรมนั้น ๆ ครับ
โดยมีการแบ่งเนื้อหาเป็นสองเรื่องหลัก ๆ คือ แนวโน้มการใช้งาน ai + rpa ในภาคอุตสาหกรรม และการแบ่งปัน use case บทเรียนจากองค์กรที่ทำจริง ๆ และเนื้อหาที่ผ่านไปให้คิด ทำพัฒนากันต่อ … ในตอนแรกจะบอกไปถึงสาเหตุเริ่มต้นว่าทำไมโรงงานอุตสาหกรรมถึงต้องมาทำ automation โดยหลาย ๆ ที่เริ่มจากอยากช่วยพนักงานให้ทำงานเท่าเดิม แต่ได้งานเพิ่มขึ้น การเชื่อมต่อไปยังการเข้าถึงลูกค้าในช่องทางต่าง ๆ รวมไปถึงกระบวนการภายในและภายนอกในกระบวนการ SCM และสุดท้ายคือต่อยอดไปเรื่อง R&D ของทั้งสินค้าและบริการทั้ง ecosystems โดยตัวแนวโน้มจะเอ่ยไปถึงการใช้งานข้อมูลจำนวนมหาศาลถึง 1.812 petabytes (จะบอกว่าภาคโรงงานนี้ใช้ดิจิตอลเยอะมาก ๆ) มีมากกว่า 27% ที่ประยุกต์ใช้ ai จนสร้างมูลค่าเพิ่มได้แล้ว การนำเอา ai ไปใช่การพยากรณ์ที่จะแม่นยำมากขึ้น และสุดท้ายจะส่งผลให้ประสิทธิภาพของการผลิตโดยรวมดีขึ้นถึง 45%-60% นั่นเอง
ความท้าทายในโครงการนี้คือการขาดความรู้ ทักษะสำหรับคนภายในทีม จึงไปติดต่อที่ปรึกษาที่เชี๋ยวชาญมาไกด์ การใช้งาน UiPath Document Understanding ในรูปแบบที่ไม่ใช่ Pre-Built ต้อง Train Model ใหม่ รวมไปถึงจำนวนเอกสารที่ให้ ML training ก็ต้องมีปริมาณในระดับหนึ่ง
ในอนาคตมองเรื่องการขยายการใช้งาน ai ในการอ่านเอกสารเพิ่มเติมนอกจาก order เป็น Shipment Tracking Status, Freight Invoice audit, HR process รวมไปถึงการประยุกต์ใช้ ai chatbot อีกด้วย
ปัจจุบันใช้งาน RPA มาช่วยในกระบวนการมากกว่า 100 process เลยทีเดียว
เริ่มเอา ai มาใช้ควบคู่เพื่อยกระดับการใช้ RPA มีการนำเอา ai ในรูปแบบText Classification for Quality Management Production (text mining) ai ช่วยอ่านเอกสารข้อมูลแนะนำ ปรับปรุงผลิตภัณฑ์ แยกหมวดหมู่และส่งต่อให้คนที่เกี่ยวข้อง, ai ด้าน internal chatbot ในองค์กร
ตั้งทีมในรูปแบบเล็ก ๆ แต่มี core team (HQ and Int) กำหนดนโยบาย และคอยช่วยตรวจสอบ (monitoring )กระบวนการที่ทำโดย RPA Dev จากบริษัทในประเทศนั้น ๆ มี (RPA Developer and Process Owner) คอยพัฒนาทดสอบ และใช้งาน
เริ่มจาก 14 RPA process ในปี 2018 จนมาถึง 82 RPA process ในปัจจุบัน
มองเป็น step จาก 4 step model for intelligent process automation
Robotic process automation (ทำได้แล้ว)
Cognitive automation (กำลังพัฒนา)
Digital Assistants (วางแผน)
Autonomous Agents (วางแผน)
ริเริ่มการใช้ DU (Document Understanding) โดยเป็น intercompany invoice ก่อน
ใช้ DU ดึงเอา contract no. แล้วสร้าง RegEx Extractor ดึงข้อมูลมาใช้งาน
ใช้ DU ดึงข้อมูลเอกสารมาทำ Order Entry ในระบบ Microsoft NAV
ทั้งนี้ผู้เขียนมีความเห็นว่ายิ่งมีการพัฒนาองค์ความรู้ทางด้าน ai มาผนวกเข้ากับความรู้ด้านการพัฒนากระบวนการ RPA ได้มากขึ้น จะทำให้เราใช้เทคโนโลยีเพื่อออกแบบกระบวนการ (ใหม่) ที่จะสั้น กระชับรวดเร็ว ตรวจสอบได้และไม่ต้องใช้แรงงานมนุษย์มากขึ้น สรุปคือ ai + rpa จะเป็นเทคโนโลยีที่จะก้าวหน้าขึ้นไปอีกดังนั้นผู้อ่านก็ควรติดตาม และพัฒนาทักษะตามไปด้วยกันครับ