รูปแบบการทำงานร่วมกันระหว่างโรบอทกับคนแบบที่ 3 เรียกว่า “human in the loop” ซึ่งเป็นการกำหนดเงื่อนไขที่ค่อนข้างซับซ้อนแต่จำเป็นเพื่อให้คนเข้ามาเป็นผู้ตัดสินใจเพื่อให้การทำงานสามารถคืบหน้าต่อไปได้
การที่เราทำความเข้าใจกับรูปแบบต่างๆของการทำงานระหว่างโรบอทกับคนจะช่วยให้เราสามารถประเมินความคุ้มค่าและวางแผนการลงทุนได้ดีขึ้น โดยเลือกชนิดของโรบอทที่เหมาะสมกับประเภทของงาน และยังสามารถสร้างความคาดหวังที่ถูกต้องกับผู้ใช้งานได้ เช่นงานบางอย่างสามารถทิ้งไว้ให้โรบอท unattended ทำงานตอนกลางคืนได้ แต่ถ้าเราเลือกใช้เฉพาะโรบอท attended อย่างเดียว งาน back office ที่มีปริมาณมากก็ยังต้องรอให้คนเข้ามาสั่งงานทุกครั้ง ทำให้ผลลัพท์เหมือนไม่ได้ช่วยประหยัดเวลาการทำงานได้มากพอ (ซึ่งถ้าเลือกใช้โรบอท unattended ตั้งแต่แรก อาจแสดงผลลัพท์หรือ ROI ที่น่าประทับใจกว่า)
การทำงานร่วมกันระหว่างคนกับโรบอทพิสูจน์ความจริงได้ข้อนึงครับว่า อย่างไรเสียคนก็จะไม่ถูกแทนที่ด้วยโรบอทอย่างที่หลายคนกังวล จริงอยู่เรามีลักษณะการทำงานแบบ fully automated ที่โรบอททำเองได้หมดตั้งแต่ต้นจนจบ แต่เราก็เห็นตัวอย่างหรือ use case อีกจำนวนมากที่แสดงให้เห็นถึงวิธีการที่คนกับโรบอททำงานร่วมกันโดยใช้จุดเด่นของแต่ละฝ่ายเพื่อให้เกิดผลดีที่สุดต่อกระบวนการทำงานนั้นๆ
จากการประเมินความคุ้มค่าของโครงการ ทีม AP ของบริษัทค้าปลีกแห่งนี้สามารถลดเวลาโดยรวมลงได้ถึง 20% เพื่อที่สมาชิกทีม AP สามารถไปใช้เวลากับเรื่องอื่นที่สำคัญกว่า เนื่องจากเวลาในการจัดการกับใบแจ้งหนี้ลดลงเหลือ 30 วินาทีต่อใบเมื่อเทียบกับ 3-5 นาทีต่อใบก่อนที่จะนำ Document Understanding เข้ามาใช้
ผู้อ่านที่สนใจสามารถติดตามข้อมูลเพิ่มเติมจากบทสัมภาษณ์ของผู้รับผิดชอบโครงการจาก Accelirate Inc. ซึ่งเป็นบริษัทที่ปรึกษาที่พัฒนาโครงการดังกล่าวได้ตามลิงค์วิดิโอด้านล่าง
ในบทความตอนต่อไปของชุด สอนโรบอทให้เข้าใจเอกสาร จะให้ข้อมูลเชิงลึกที่มากขึ้นของ Document Understanding ขอให้รอติดตามทาง blog ของบ.ออโต้แมทนะครับ
แนวคิดไอทีเพื่อสิ่งแวดล้อมกำลังเป็นเรื่องที่ถูกหยิบยกมาคุยในเวทีโลก และเมื่อพิจารณาถึงระบบ automation ในรูปแบบที่จะมาช่วยเติมเต็มในเรื่องนี้จะเห็น use case อยู่พอสมควรอาทิเช่นใช้ระบบบ RPA ตรวจสอบดูสถานะการทำงานของ data center หรือCloud เมื่อมีการถูกเรียกใช้งานน้อย ระบบอาจปิดการทำงานบางอย่างที่มีผลต่อการประหยัดพลังงานไฟฟ้าอย่างมีนัยยะได้ หรือการใช้ RPA low-code มาในกระบวนการที่ต้องใช้กระดาษ (เอกสารในการอนุมัติขั้นตอน) เพื่อประหยัดการใช้กระดาษ หรือไม่ต้องใช้เอกสารใด ๆ ในกระบวนการอีกเลย ทุกอย่างใช้ RPA ทำใน workflow process ทั้งหมดเป็นต้น โดยแนวโน้มนี้จะถูกหยิบยกและหา use case ซี่งจะเป็นวาระหลักในปีต่อๆไปอย่างแน่นอน
Trend #9: ความท้าท้ายของฝ่ายบริหารงานบุคคล เมื่อถึงการมาของ Digital Workforce
Trend #5: ทีม Automation CoEs จะเป็นผู้เชื่อมการใช้ AI เข้ากับ RPA เพื่อยกระดับการใช้งานขึ้นไปอีกขั้น
ปัจจุบันชัดเจนแล้วว่าเมื่อ CoEs ทีมได้นำเอา AI มาควบรวมพลังของ robots นั้นจะเป็นการเพิ่มศักยภาพขึ้นอย่างมากมาย ปลายทางของ AI ในที่นี้คือการเอา model มาทำผ่านระบบ automation แล้วตั้งค่าการทำงานแบบอัตโนมัติ ให้ robotsเข้าถึงข้อมูล และเมื่อต้องการให้มนุษย์ทำการตรวจสอบเพื่อพัฒนาปรับปรุง model ก็สามารถทำได้ไม่ยาก องค์กรใหญ่หรือองค์กรที่มีแนวคิดแบบนี้จะพัฒนาทั้ง RPA + AI ไปได้อย่างเห็นผล รวดเร็ว
Trend #6: ปฎิวัติ RPA ด้วยพลังของ ML model
การประยุกต์งานร่วมกันระหว่าง RPA + AI จะทำให้นักพัฒนาต้องปรับมุมองแค่การเอา robots มาทำงานสั้น ๆ ง่าย ๆโดยจะไม่เหมือนเดิมอีกต่อไปเนื่องด้วยการพัฒนา ML ทำให้โปรแกรมฉลาดขึ้น นักพัฒนาอาจไม่ต้องสอน robot แบบ step-by-step อีกต่อไป ดังตัวอย่างของ Forms AI ในคลิปด้านล่าง มนุษย์แค่สั่ง robot นำเข้าเอกสารชนิดเดียวกันสักเล็กน้อย จากนั้น ML จะคำนวณความเป็นไปได้ และดึงข้อมูลจากเอกสารมาให้มนุษย์ยืนยันว่าที่ ML ดึงมาให้นั้นถูกต้องแค่ไหน จากนั้น ML จะพัฒนาไปเรื่อย ๆ ผ่านเอกสารปริมาณมากที่ไหลเข้า ด้วยการทำงานแบบนี้การทำ OCR ไม่จำเป็นต้องสร้าง template อีกต่อไป เพราะ ML จะมองและแนะนำให้เองว่าเอกสารเป็นประเภทไหน (แต่มนุษย์ยังต้องยืนยันเพื่อพัฒนาความฉลาด) และสุดท้ายนอกจาก robot จะมองเห็น และกระทำให้แล้ว ยัง “เข้าใจ” รูปแบบต่างๆของข้อมูลมากขึ้นอีกด้วย (ในอนาคต)
ปรับการใช้งาน RPA ให้มาเป็นการทำงานด่านหน้าเพื่อสนับสนุนโมเดลการทำธุรกิจใหม่ๆ ไม่ใช่เป็นเพียง back office แบบเดิมอาทิเช่น chat bots, robot for call center หรือ customer self service เป็นต้น
เป็นการมองอนาคตถึงแนวคิดที่ว่าองค์กรยุคใหม่จะมีการนำเอาหลักคิด “robot for every person” เฉกเช่นการให้พนักงานทุกคนมีอีเมลเป็นของตนเองเพื่อเอาไว้สื่อสารเป็นต้น แต่แนวคิดนี้คือให้พนักงาน (ทุกคน) มี digital desktop assistant มาทำงานเชื่อมต่อกับกระบวนการขององค์กรที่ส่วนมากมีหลากหลาย enterprise systems, web application หรือระบบเก่าๆอย่าง legacy systems ที่ไม่ค่อยมี api ในการเชื่อมต่อมากนัก
ตอนจบของซีรีย์นี้กันครับ มาทบทวนสักนิดสำหรับ 5 แนวทางที่จะใช้ RPA ในการปลดล๊อค Business Intelligence & Data Analytics …. ตอนนี้จะกล่าวถึงสองแนวทางสุดท้าย
– Improve data quality
– Analyze data from any system
– Take action when and where you make decisions
– Use BI data in complex business and IT process automations
– Democratize BI through automated reports
Use BI data in complex business and IT process automations
หลายๆองค์กรใช้การดึงข้อมูลและแสดงผลให้ช่วยในการ “มองเห็น” สถานะทางด้านธุรกิจมากขึ้น และเช่นกันเราสามารถนำเอาความสามารถนี้ของ BI มาใช้ในการพัฒนากระบวนการธุรกิจให้ดีขึ้นได้ด้วยตัวอย่างเช่น เมื่อเราใช้ ETL, BI ดึงข้อมูลการเงินออกมา หากเข้าเงื่อนไขการจ่ายเงินที่มีเครดิตเทอมในมูลค่าสูงๆ เราอาจพัฒนางาน robots มาช่วยในการส่งข้อความเตือนการจ่ายในครั้งนี้ (reminder) การมอบหมายหน้าที่นี้ให้ผู้ใช้ที่เกี่ยวข้องโดยตรงให้รับทราบหรือทำการอนุมัติกระบวนการนี้ หรือในอีกตัวอย่างหนึ่งเช่น หากระบบ BI ดึงข้อมูล IT Asset ออกมาแล้วพบว่าในระบบมีทรัพยากรที่ถูกใช้งานอยู่แต่ยังไม่ได้ทำการ patching เราก็ให้ bots ช่วยทำให้ได้หรือหากตรวจจากข้อมูลพบว่าทรัพยากรไม่ได้ถูกใช้งาน (usages) อย่างคุ้มค่าหรือไม่เพียงพอ เราก็อาจให้ robots ช่วยจัดสรรให้ได้อย่างอัตโนมัติเป็นต้น
Democratize BI through automated reports
เมื่อเรามีการดึงข้อมูลมาวิเคราะห์ที่ดีแล้ว สิ่งที่ดีไปกว่านั้นคือการแบ่งปันข้อมูลให้ก้บหน่วยงานอื่นๆ ที่จะได้ใช้อย่างเหมาะสม โดยอาจพิจารณาการแชร์ข้อมูลผ่านระบบ RPA ให้จัดทำและส่งข้อมูลในรูปแบบ data export (no coding) การปรับสอดแทรกข้อมูลรูปภาพไปกับรายงานในรูปแบบ PDF (ป้องกันการเข้าถึง การแก้ไขภายหลัง) หรือการเปลี่ยนมุมมองเป็นกราฟแล้วส่งไปเป็นMicrosoft Powerpoint ส่วนช่องทางก็ทำผ่านช่องทางปกติเช่น Email, slack, MS Team